Significance of Ziprasidone Nanoparticles in Psychotic Disorders †
Abstract
:1. Introduction
2. Drug Profile
3. Various Nanoformulations of Ziprasidone
3.1. Ziprasidone Nanosuspensions
3.1.1. Advantages
- i.
- Most cost-effective;
- ii.
- Useful for poorly soluble drugs;
- iii.
- Physically more stable than liposomes;
- iv.
- Provides ease of manufacture and scaling up for large-scale production;
- v.
- Rapid dissolution and tissue targeting;
- vi.
- Reduction in tissue irritation;
- vii.
3.1.2. Disadvantages
- i.
- Compaction, sedimentation, and physical stability can all be problematic;
- ii.
- Because of its weight, extra caution must be used while handling and transporting;
- iii.
- Unsuitable dosage [31].
3.2. Ziprasidone Nanoemulsions
- Oil in water (o/w): nanoemulsions wherein oil droplets are dispersed in the continuous aqueous phase;
- Water in oil (w/o): nanoemulsions wherein water droplets are dispersed in the continuous oil phase;
- Bi-continuous: nanoemulsions wherein micro-domains of oil and water are interspersed within the system.
3.2.1. Advantages
- i.
- Removes variations in absorption;
- ii.
- Increases the rate of absorption;
- iii.
- Supports lipophilic drug solubilization;
- iv.
- Offers aqueous dosage forms for medications that are not water soluble;
- v.
- Enhances bioavailability;
- vi.
- Several delivery methods, including topical, oral, and intravenous routes, can be used to administer the product;
- vii.
- Effective and quick penetration of the drug substance aids in flavor muffling;
- viii.
- Offers defense against hydrolysis and drug oxidation in the oil phase of the o/w emulsion;
- ix.
- Less energy is necessary;
- x.
- Liquid dose forms promote patient compliance;
- xi.
- Nanoemulsions are thermally stable systems that are stable and ensure that a system’s self-emulsifying characteristics do not rely on the process that was used;
- xii.
- Nanoemulsions transport both lipophilic and hydrophilic substances;
- xiii.
- The use of nanoemulsions as a delivery system increases a drug’s effectiveness, and reduces the overall dose; hence, side effects are reduced [46].
3.2.2. Disadvantages
- i.
- The use of a high concentration of cosurfactants and surfactants is required for stabilizing nanodroplets;
- ii.
- A low solubilizing ability for high melting substances;
- iii.
- The surfactant must not be harmful in pharmaceutical uses;
- iv.
- The stability of nanoemulsions is affected by factors including environmental aspects such as temperature and pH, and due to these specifications, when a nanoemulsion is delivered, it transforms the patients [47].
4. Significance of Ziprasidone Nanoparticles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhalekar, M.R.; Upadhaya, P.G.; Reddy, S.; Kshirsagar, S.J.; Madgulkar, A.R. Formulation and evaluation of acyclovir nanosuspension for enhancement of oral bio-availability. Asian J. Pharm. 2014, 8, 110–118. [Google Scholar] [CrossRef]
- Mokale, V.; Patil, K.; Khatik, T.; Sutar, Y. Glyburide nanosuspeNCion: Influence of processing and formulation parameter on solubility andin vitro dissolution behavior. Asian J. Pharm. 2013, 7, 111–117. [Google Scholar] [CrossRef]
- Lipincki, C. Poor aqueous solubility-an industry wide problem in drug discovery. Am. Pharm. Rev. 2002, 5, 82–85. [Google Scholar]
- Muller, R.H.; Peters, K. Nanosuspension for the formulation of poorly soluble drugs: I. Preparation by a size reduction technique. Int. J. Pharm. 1998, 160, 229–237. [Google Scholar] [CrossRef]
- Chaudhary, A.; Nagaich, U.; Gulati, N.; Sharma, V.K.; Khosa, R.L. Enhancement of solubilization and bio-availability of poorly soluble drugs by physical and chemical modification: A recent review. J. Adv. Pharm. Educ. Res. 2012, 2, 32–67. [Google Scholar]
- Jinno, J.; Kamada, N.; Miyake, M.; Yamada, K.; Mukai, T.; Odomi, M.; Toguchi, H.; Liversidge, G.G.; Higaki, K.; Kimura, T.; et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release 2006, 111, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.K. Nanotechnology: Applications, Market and Companies; Jain Pharma Biotech Publications: Basel, Switzerland, 2005. [Google Scholar]
- Torchilin, V.P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS 2007, 9, 128–147. [Google Scholar] [CrossRef]
- Nagavarma, B.V.N.; Hement, K.S.Y.; Ayaz, A.; Vasudha, L.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanoparticles—A review. Asian J. Pharm. Clin. Res. 2012, 5, 17–23. [Google Scholar]
- Abhilash, M. Potential applications of Nanoparticles. Int. J. Pharm. Biol. Sci. 2010, 1, 1–12. [Google Scholar]
- Harikrishna, D.; Ananthsrinivas, C.; Mansoor, M.A. Role of nanotechnology in pharmaceutical product development. J. Pharm. Sci. 2007, 96, 2547–2565. [Google Scholar]
- Ziprasidone-Wikipedia. Available online: https://en.wikipedia.org/wiki/Ziprasidone (accessed on 14 March 2023).
- Ziprasidone. Available online: https://m.chemicalbook.com/ (accessed on 14 March 2023).
- Ziprasidone (Geodon): Drug Monograph. Available online: https://www.ebmconsult.com/articles/ziprasidone-geodon#jump_ss_103734 (accessed on 14 March 2023).
- Geetha, G.; Poojitha, U.; Arshad Ahmed, K. Various techniques for preparation of nanosuspension—A review. Int. J. Pharma Res. Rev. 2014, 3, 30–37. [Google Scholar]
- Kocbek, P.; Baumgartner, S.; Kristl, J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm. 2006, 312, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Bohm, B.H.L.; Müller, R.H. Lab-scale production unit design for nanosuspensions of sparingly soluble cytotoxic drugs. Pharm. Sci. Technol. Today 1999, 2, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Patravale, V.B.; Date, A.A.; Kulkarni, R.M. Nanosuspensions: A promising drug delivery strategy. J. Pharm. Pharmacol. 2004, 56, 827–840. [Google Scholar] [CrossRef]
- Hintz, R.J.; Johnson, K.C. The effect of particle size distribution on dissolution rate and oral absorption. Int. J. Pharm. 1989, 51, 9–17. [Google Scholar] [CrossRef]
- Rabinow, B.E. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 2004, 3, 785–796. [Google Scholar] [CrossRef]
- Kumari, K.; Rao Srinivasa, Y. Nanosuspensions: A Review. Int. J. Pharm. 2017, 7, 77–89. [Google Scholar]
- Vaneerdenbrugh, B.; Vandenmooter, G.; Augustijns, P. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int. J. Pharm. 2008, 364, 64–75. [Google Scholar] [CrossRef]
- O’ Neil, M.J.; Heckelman, P.E.; Koch, C.B.; Roman, K.J.; Kenny, C.M.; D’Arecca, M.R. (Eds.) Ziprasidone Hydrochloride. In The Merck Index—An Encyclopedia of Chemicals, Drugs and Biological, 14th ed.; Merck Research Laboratory, Division of Merck & Co., Inc.: Whitehouse Station, NJ, USA, 2006; p. 10307. [Google Scholar]
- Sweetman, S.C. (Ed.) Ziprasidone Hydrochloride. In Martindale—The Complete Drug Reference, 36th ed.; Pharmaceutical Press: London, UK, 2019; p. 1036. [Google Scholar]
- Miceli, J.J.; Wilner, K.D.; Swan, S.K.; Tensfeldt, T.G. Pharmacokinetics, safety, and tolerability of intramuscular Ziprasidone in healthy volunteers. J. Clin. Pharmacol. 2005, 45, 620–630. [Google Scholar] [CrossRef]
- Preskorn, S.H. Pharmacokinetics and therapeutics of acute intramuscular ziprasidone. Clin. Pharmacokinet. 2005, 44, 1117–1133. [Google Scholar] [CrossRef]
- Miceli, J.J.; Smith, M.; Robarge, L.; Morse, T.; Laurent, A. The effects of ketoconazole on ziprasidone pharmacokinetics—A placebo-controlled crossover study in healthy volunteers. Br. J. Clin. Pharmacol. 2000, 49, 71–76. [Google Scholar] [CrossRef]
- Martini, L.G.; Crowley, P.J. Controlling drug release in oral product development programs: An industrial Perspective. In Controlled Release in Oral Drug Delivery; Springer: New York, NY, USA, 2011; pp. 45–70. [Google Scholar]
- Shid, R.L.; Dhole, S.N.; Kulkarni, N.; Shid, S.L. Nanosuspension: A review. Int. J. Pharm. Sci. Rev. 2013, 22, 98–106. [Google Scholar]
- Yadav, M.; Dhole, S.; Chavanet, P. Nanosuspension: A Novel Techniques In Drug Delivery System. World J. Pharm. Pharm. Sci. 2014, 3, 410–433. [Google Scholar]
- Nishi, T.; Garima, G.; Sharma, P.; Nitin, K. Nanoemulsions: A Review on Various Pharmaceutical Applications. Glob. J. Pharmacol. 2012, 6, 222–225. [Google Scholar]
- Theaj Ravi, U.P.; Thiagaraja, P. Irritancymake it a suitable carrier for the Nanoemulsions for drug delivery through different transdermal delivery of the drugs in the routes. Res. Biotech. 2011, 2, 1–13. [Google Scholar]
- Sharma, N.; Bansal, M.; Visht, S. Nanoemulsion: A new concept of delivery applicationofnanoemulsion. System 2010, 1, 2–6. [Google Scholar]
- Devarajan, V.; Ravichandran, V. Nanoemulsions: As Modified Drug Delivery Tool. Int. J. Comp. Pharm. 2011, 4, 1–6. [Google Scholar]
- Shah, P.; Bhalodia, D. Nanoemulsion: A Pharmaceutical Review. Syst. Rev. Pharm. 2010, 1, 24–32. [Google Scholar] [CrossRef]
- Vyas, T.K.; Babbar, A.K.; Sharma, R.K.; Singh, S.; Mishra, A. Intranasal mucoadhesive microemulsion of clonazepam preliminary studies on brain targeting. J. Pharm. Sci. 2006, 95, 570–580. [Google Scholar] [CrossRef]
- Khan, S.; Patil, K.; Yeole, P.; Gaikwad, R. Brain targeting studies on buspirone hydrochloride after intranasal administration of mucoadhesive formulation in rats. J. Pharm. Pharmacol. 2009, 61, 669–675. [Google Scholar] [CrossRef]
- Luppi, B.; Bigucci, F.; Abruzzo, A.; Corace, G.; Cerchiara, T.; Zecchi, V. Transport of drugs from nasal cavity to the central nervous system. Eur. J. Pharm. Sci. 2009, 11, 1–18. [Google Scholar]
- Illum, L. Nasal drug delivery: New developments and strategies. Drug Disc. Today 2002, 7, 1184–1189. [Google Scholar] [CrossRef]
- Illum, L.; Hinchelife, M.; David, S.S. The effect of blood sampling site and physicochemical characteristics of drugs on bioavailability of drugs on administration in the sheep model. Pharm. Res. 2003, 27, 1474–1485. [Google Scholar] [CrossRef]
- Mistry, A.; Stolnic, S.; Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pham. 2008, 379, 146–157. [Google Scholar] [CrossRef]
- Ugwoke, M.; Agu, R.; Verbeke, N.; Kinget, R. Nasal mucoadhesive drug delivery: Bachground, applications, trends and future perspectives. Adv. Drug Deliv. Rev. 2005, 57, 1640–1665. [Google Scholar] [CrossRef]
- Gavini, E.; Hegge, A.B.; Rassu, G. Nasal administration of carbamazepine using chitosan microspheres: In-vitro/in-vivo studies. Int. J. Pharm. 2006, 307, 9–15. [Google Scholar] [CrossRef]
- Pires, A.; Fortuna, A.; Alves, G.; Falcao, A. Intranasal drug delivery; how, why and what for? J. Pharm. Pharm. Sci. 2009, 12, 288–311. [Google Scholar] [CrossRef]
- Trotta, M. Influence of phase transformation on indomethacin release from microemulsions. J. Control. Release 1999, 60, 399–443. [Google Scholar] [CrossRef]
- Figueroa Alvarez, M.J.; Blanco-Méndez, J. Transdermal delivery of methotrexate: Iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int. J. Pharm. 2001, 215, 57–65. [Google Scholar] [CrossRef]
- Patil, J.; Sayyed, H.; Suryawanshi, H.; Patil, B. Formulation and Evaluation of Verdant Tablets Containing Saponin-Coalesc-21 ed Silver Nanoparticles Got from Fenugreek Seed Extract. Chem. Proc. 2022, 8, 56. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, M.; Patil, J.; Patil, D.; Patel, K.; Tatiya, A. Significance of Ziprasidone Nanoparticles in Psychotic Disorders. Mater. Proc. 2023, 14, 62. https://doi.org/10.3390/IOCN2023-14503
Patil M, Patil J, Patil D, Patel K, Tatiya A. Significance of Ziprasidone Nanoparticles in Psychotic Disorders. Materials Proceedings. 2023; 14(1):62. https://doi.org/10.3390/IOCN2023-14503
Chicago/Turabian StylePatil, Mamta, Javesh Patil, Devyani Patil, Kiran Patel, and Aayushi Tatiya. 2023. "Significance of Ziprasidone Nanoparticles in Psychotic Disorders" Materials Proceedings 14, no. 1: 62. https://doi.org/10.3390/IOCN2023-14503
APA StylePatil, M., Patil, J., Patil, D., Patel, K., & Tatiya, A. (2023). Significance of Ziprasidone Nanoparticles in Psychotic Disorders. Materials Proceedings, 14(1), 62. https://doi.org/10.3390/IOCN2023-14503