Production of Low-Cost Nano-Functionalized Bacterial Cellulose Films for Smart/Intelligent Packaging †
Abstract
:1. Introduction
2. Low-Cost Substrates for Production of Bacterial Cellulose
3. Incorporation of Nanomaterials
4. Intelligent Packaging
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Youssef, A.M.; El–Sayed, S.M.; El–Sayed, H.S.; Salama, H.H.; Mohamed, H.F.; Abd ElSalam, M.A. Novel bionanocomposite materials used for packaging skimmed milk acid coagulated cheese (Karish). Int. J. Biol. Macromol. 2018, 115, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.M.; Assem, F.; Essam, M.; Elaaser, M.; Ibrahim, O.; Mahmoud, M.; Abd ElSalam, M. Development of a novel bionanocomposite material and its use in packaging of Ras cheese. Food Chem. 2019, 270, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh–Sani, M.; Hamishehkar, H.; Khezerlou, A.; Azizi–Lalabadi, M.; Azadi, Y.; Nattagh–Eshtivani, E.; Fasihi, M.; Ghavami, A.; Aynehchi, A.; Ehsani, A. Bioemulsifiers derived from microorganisms: Applications in the drug and food industry. Adv. Pharm. Bull. 2018, 8, 191. [Google Scholar] [CrossRef] [PubMed]
- Khezrian, A.; Shahbazi, Y. Application of nanocompostie chitosan and carboxymethyl cellulose films containing natural preservative compounds in minced camel’s meat. Int. J. Biol. Macromol. 2018, 106, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- De Jong, A.R.; Boumans, H.; Slaghek, T.; Van Veen, J.; Rijk, R.; Van Zandvoort, M. Active and intelligent packaging for food: Is it the future? Food Addit. Contam. A 2005, 22, 975–979. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, C.; Yang, J.; Nie, Y.; Chen, C.; Sun, D. Recent advances in bacterial cellulose. Cellulose 2014, 21, 1–30. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Z.; Shen, R.; Chen, S.; Yang, X. Bacterial cellulose in food industry: Current research and future prospects. Int. J. Biol. Macromol. 2020, 158, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Szymanska-Chargot, M.; Chylinska, M.; Cybulska, J.; Kozioł, A.; Pieczywek, P.M.; Zdunek, A. Simultaneous influence of pectin and xyloglucan on structure and mechanical properties of bacterial cellulose composites. Carbohydr. Polym. 2017, 174, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Jedrzejczak-Krzepkowska, M.; Kubiak, K.; Ludwicka, K.; Bielecki, S. Bacterial nanocellulose synthesis, recent findings. In Bacterial Nanocellulose: From Biotechnology to Bio-Economy; Gama, M., Dourado, F., Bielecki, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 19–46. ISBN 9780444634665. [Google Scholar]
- Ayed, L.; Abid, S.B.; Hamdi, M. Development of a beverage from red grape juice fermented with the Kombucha consortium. Ann. Microbiol. 2017, 67, 111–121. [Google Scholar] [CrossRef]
- Hestrin, S.; Schramm, M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 1954, 58, 345. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R.; et al. A Review on the Modification of Cellulose and Its Applications. Polymers 2022, 14, 3206. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.M.; Youssef, M.; Ayad, D.M.; Sarhan, A.A. A novel approach to prepare Poly (vinyl acetate)/Ag nanocomposite for effective antimicrobial coating applications. Polym. Plast. Technol. Eng. 2015, 54, 1735–1742. [Google Scholar] [CrossRef]
- Takeuchi, M.T.; Kojima, M.; Luetzow, M. State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Food Res. Int. 2014, 64, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Huang, X.-w.; Zou, X.-b.; Shi, J.-y.; Li, Z.-h.; Zhao, J.-w. Colorimetric sensor arrays based on chemo-responsive dyes for food odor visualization. Trends Food Sci. Technol. 2018, 81, 90–107. [Google Scholar]
- Alizadeh-Sani, M.; Mohammadian, E.; Rhim, J.W.; Jafari, S.M. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci. Technol. 2020, 105, 93–144. [Google Scholar] [CrossRef]
Waste Source | Source |
---|---|
Agricultural waste | Corn straw, wheat straw, sugarcane straw, sweet sorghum, tobacco extract, cashew tree residues, pecan nutshell, oat hulls, silver grass, elephant grass |
Industrial waste | Waste water of candied jujube, rice noodle processing, industrial hardwood, citrus pulp water, coconut water, sugar beet molasses, cheese whey, bovine whey powder, sweet lime pulp, rice wine distillery, waste beer yeast, crude glycerol residue, cellulose-based textile, cotton-based waste textiles, coffee cherry husk |
Food waste | Starch kitchen waste, pear peel and pomace, grape skins, citrus peel and pomace, potato peel, orange peel, cashew apple juice, orange juice, lemon peel, grapefruit juice, maple syrup, carrot juice, pineapple peels, mango peels, Mangifera indica extracts, rotten banana, vegetable oil, tapioca waste |
Natural Colorant | Sources |
---|---|
Anthocyanins | Apple, elderberry, blackberry, nectarine, plum, peach, red cabbage, grape, beans, eggplants, strawberry, red radishes, cranberries, blueberries, plums, cherries, purple corn, red berries |
Carotenoids | Carrot, egg, orange, chicken fat, yellow corn, egg, liver, tomato, pink grapefruit, palm oil, paprika (Capsicum annum L.), lobster, shrimp, salmon, berries, annatto seeds |
Betalains | Beets, beta vulgaris L. roots, caryophyllales, fungi, flowers of the cactus mammillaria, Opuntia ficus-indica [L.] Miller fruits Opuntia cactus, Hylocereus polyrhizus (Weber) Britton & Rose fruits |
Chlorophylls | Universal (nettle, spinach, grass, etc.), mostly plants, Cyanobacteria, various algae |
Anthraquinone/Naphthoquinone | Aloe vera, cassia species, Cassia alata, Prismatomeris sarmentosa, P. glabra, Morinda citrifolia, M. elliptica, Hedyotis capitellata, Rennellia elliptica, senna, rhubarb, Dactylopius coccus, bacteria, marine sponges, fungi, lichens, insects |
Curcumin | Curcuma longa (rhizomes), ginger family |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikshit, P.K. Production of Low-Cost Nano-Functionalized Bacterial Cellulose Films for Smart/Intelligent Packaging. Mater. Proc. 2023, 14, 58. https://doi.org/10.3390/IOCN2023-14485
Dikshit PK. Production of Low-Cost Nano-Functionalized Bacterial Cellulose Films for Smart/Intelligent Packaging. Materials Proceedings. 2023; 14(1):58. https://doi.org/10.3390/IOCN2023-14485
Chicago/Turabian StyleDikshit, Pritam Kumar. 2023. "Production of Low-Cost Nano-Functionalized Bacterial Cellulose Films for Smart/Intelligent Packaging" Materials Proceedings 14, no. 1: 58. https://doi.org/10.3390/IOCN2023-14485
APA StyleDikshit, P. K. (2023). Production of Low-Cost Nano-Functionalized Bacterial Cellulose Films for Smart/Intelligent Packaging. Materials Proceedings, 14(1), 58. https://doi.org/10.3390/IOCN2023-14485