Biopolymer–Lipid Hybrid Cubosome for Delivery of Acemannan †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hybrid Nanoparticle and Liposome Productions
2.2. DLS and ITC Analysis
2.3. Encapsulation Measurement
2.4. Release Study
3. Results and Discussions
3.1. Zeta Potential and Hydrodynamic Diameter
3.2. Interaction with Model Membrane
3.3. Encapsulation of Acemannan
3.4. In Vitro Release of Acemannan
4. Conclusions
- The lipid–biopolymer hybrid cubosome shows high potential for encapsulation and prolonged release of acemannan in addition to strong interaction with the cell model membrane in gastric and intestinal conditions.
- The nanoparticles showed great flexibility in various pH values.
- The various components that were used in the production of nanoparticles can act differently in the biological interaction process.
- The study points out a strong indication of the material as a drug or bioactive delivery system for oral administration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madrid, R.R.M.; Mathews, P.D.; Patta, A.C.M.F.; Gonzales-Flores, A.P.; Ramirez, C.A.B.; Rigoni, V.L.S.; Tavares-Dias, M.; Mertins, O. Safety of oral administration of high doses of ivermectin by means of biocompatible polyelectrolytes formulation. Heliyon 2021, 7, e05820. [Google Scholar] [CrossRef] [PubMed]
- Hueppe, N.; Wurm, F.R.; Landfester, K. Nanocarriers with Multiple Cargo Load—A Comprehensive Preparation Guideline Using Orthogonal Strategies. Macromol. Rapid Commun. 2022, 2200611. [Google Scholar] [CrossRef] [PubMed]
- Catoira, M.C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019, 30, 115. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Yamamura, Y.; Miwa, Y.; Kutsumizu, S. A structural model of the chiral “Im3m” cubic phase. Phys. Chem. Chem. Phys. 2016, 18, 3280–3284. [Google Scholar] [CrossRef] [PubMed]
- Saturni, L.; Rustichelli, F.; Di Gregorio, G.M.; Cordone, L.; Mariani, P. Sugar-induced stabilization of the monoolein Pn3m bicontinuous cubic phase during dehydration. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys. 2001, 64 Pt 1, 040902. [Google Scholar] [CrossRef] [PubMed]
- Mertins, O.; Mathews, P.D.; Angelova, A. Advances in the design of ph-sensitive cubosome liquid crystalline nanocarriers for drug delivery applications. Nanomaterials 2020, 10, 963. [Google Scholar] [CrossRef] [PubMed]
- Mathews, P.D.; Mertins, O.; Angelov, B.; Angelova, A. Cubosomal lipid nanoassemblies with pH-sensitive shells created by biopolymer complexes: A synchrotron SAXS study. J. Colloid Interface Sci. 2022, 607, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Mathews, P.D.; Patta, A.C.M.F.; Gonçalves, J.V.; Gama, G.S.; Garcia, I.T.S.; Mertins, O. Targeted drug delivery and treatment of endoparasites with biocompatible particles of pH-responsive structure. Biomacromolecules 2018, 12, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Patta, A.C.M.F.; Mathews, P.D.; Madrid, R.R.M.; Rigoni, V.L.S.; Silva, E.R.; Mertins, O. Polyionic complexes of chitosan-N-arginine with alginate as pH responsive and mucoadhesive particles for oral drug delivery applications. Int. J. Biol. Macromol. 2020, 148, 550–564. [Google Scholar] [CrossRef] [PubMed]
- Mathews, P.D.; Patta, A.C.M.F.; Madrid, R.R.M.; Ramirez, C.A.B.; Pimenta, B.V.; Mertins, O. Efficient treatment of fish intestinal parasites applying membrane-penetrating oral drug delivery nanoparticle. ACS Biomater. Sci. Eng. 2021, 9, 2911–2923. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, B.V.; Madrid, R.R.M.; Mathews, P.D.; Riske, K.A.; Loh, W.; Angelov, B.; Angelova, A.; Mertins, O. Interaction of polyelectrolyte-shell cubosomes with serum albumin for triggering drug release in gastrointestinal cancer. J. Mat. Chem. B 2023, 11, 2490–2503. [Google Scholar] [CrossRef] [PubMed]
- Yun, P.; Devahastin, S.; Chiewchan, N. Microstructures of encapsulates and their relations with encapsulation efficiency and controlled release of bioactive constituents: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1768–1799. [Google Scholar] [CrossRef] [PubMed]
- Yeo, Y.; Park, K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch. Pharmacal Res. 2004, 27, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, C.A.B.; Carriero, M.M.; Leomil, F.S.C.; Sousa, R.L.M.; Miranda, A.; Mertins, O.; Mathews, P.D. Complexation of a polypeptide-polyelectrolytes bioparticle as a biomaterial of antibacterial activity. Pharmaceutics 2022, 14, 2746. [Google Scholar] [CrossRef] [PubMed]
- Häuser, M.; Langer, K.; Schönhoff, M. pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 2504–2512. [Google Scholar] [CrossRef] [PubMed]
Sample | Zeta Potential (mV) | Hydrodynamic Diameter (nm) | PDI * |
---|---|---|---|
pH 2.5 MO + PF127 | 0.06 ± 3.5 | 282 ± 112 | 0.21 |
pH 7.4 MO + PF127 | −0.14 ± 11.0 | 251 ± 92 | 0.17 |
pH 2.5 MO + PF127 + POL + AC | 5.00 ± 5.9 | 280 ± 155 | 0.36 |
pH 7.4 MO + PF127 + POL + AC | −14.01 ± 3.8 | 662 ± 271 | 0.25 |
c % | c (mM) | Abs | |
---|---|---|---|
100% | 0.980 | 1.50 | |
80% | 0.784 | 1.33 | |
60% | 0.588 | 1.13 | |
40% | 0.392 | 0.84 | |
20% | 0.196 | 0.47 | |
10% | 0.098 | 0.33 | |
6% | 0.058 | 0.17 | |
Sample | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrid, R.R.M.; Mathews, P.D.; Pimenta, B.V.; Mertins, O. Biopolymer–Lipid Hybrid Cubosome for Delivery of Acemannan. Mater. Proc. 2023, 14, 56. https://doi.org/10.3390/IOCN2023-14486
Madrid RRM, Mathews PD, Pimenta BV, Mertins O. Biopolymer–Lipid Hybrid Cubosome for Delivery of Acemannan. Materials Proceedings. 2023; 14(1):56. https://doi.org/10.3390/IOCN2023-14486
Chicago/Turabian StyleMadrid, Rafael R. M., Patrick D. Mathews, Barbara V. Pimenta, and Omar Mertins. 2023. "Biopolymer–Lipid Hybrid Cubosome for Delivery of Acemannan" Materials Proceedings 14, no. 1: 56. https://doi.org/10.3390/IOCN2023-14486
APA StyleMadrid, R. R. M., Mathews, P. D., Pimenta, B. V., & Mertins, O. (2023). Biopolymer–Lipid Hybrid Cubosome for Delivery of Acemannan. Materials Proceedings, 14(1), 56. https://doi.org/10.3390/IOCN2023-14486