Hydrogels and Nanostructures Formed from Ciprofloxacin–Peptide Conjugates †
Abstract
:1. Introduction
2. Methods
2.1. Chemical Synthesis
2.2. Preparation of Hydrogels
2.3. Scanning Transmission Electron Microscopy (STEM) Microscopy
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Health Service (U.K.) Website. Available online: https://www.nhs.uk/medicines/ (accessed on 5 February 2023).
- Castro, W.; Navarro, M.; Biot, C. Medicinal potential of ciprofloxacin and its derivatives. Future Med. Chem. 2013, 5, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.C.; Jain, A.; Pashwa, R.; Yar, M.S. Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. J. Enzyme Inhib. Med. Chem. 2010, 25, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Assalim, M.; Joulani, M.; Awwad, R.; Assad, M.; Almasri, M.; Kittani, N.; Zaid, A.N. Facile Synthesis of Ciprofloxacin Prodrug Analogues to Improve its Water Solubility and Antibacterial Activity. ChemistrySelect 2016, 6, 1132–1135. [Google Scholar] [CrossRef]
- Bartzatt, R.; Cirillo, S.R.G.; Cirillo, J.D. Design of Ciprofloxacin Derivatives that Inhibit Growth of Methicillin Resistant Staphylococcus aureus (MRSA) and Methicillin Susceptible Staphylococcus aureus (MSSA). Med. Chem. 2010, 6, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lu, X.-M.; Zhang, M.R.; Hu, K.; Li, Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact. Mater. 2022, 11, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Jervis, P.J.; Hilliou, L.; Pereira, R.B.; Pereira, D.M.; Martins, J.A.; Ferreira, P.M.T. Evaluation of a model photo-caged dehydropeptide as a stimuli-responsive supramolecular hydrogel. Nanomaterials 2021, 11, 704. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.B.P.; Veloso, S.R.S.; Castanheira, E.M.S.; Figueiredo, P.R.; Carvalho, A.T.P.; Hilliou, L.; Pereira, R.B.; Pereira, D.M.; Martins, J.A.; Ferreira, P.M.T.; et al. An injectable, naproxen-conjugated, supramolecular hydrogel with ultra-low critical gelation concentration—Prepared from a known folate receptor ligand. Soft Matter 2022, 18, 3955–3966. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.B.P.; Pereira, R.B.; Pereira, D.M.; Hilliou, L.; Castro, T.G.; Martins, J.A.; Jervis, P.J.; Ferreira, P.M.T. Aryl-Capped Lysine-Dehydroamino Acid Dipeptide Supergelators as Potential Drug Release Systems. Int. J. Mol. Sci. 2022, 23, 11811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ai, S.; Yang, Z.; Li, X. Peptide-based supramolecular hydrogels for local drug delivery. Adv. Drug Deliv. Rev. 2021, 174, 482–503. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Chuttani, K.; Khar, R.K.; Saluja, D.; Mishra, A.K.; Chopra, M. Synthesis and evaluation of Ciprofloxacin derivatives as diagnostic tools for bacterial infection by Staphylococcus aureus. Metallomics 2009, 1, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Veloso, S.R.S.; Jervis, P.J.; Silva, J.F.; Hilliou, L.; Moura, C.; Pereira, D.M.; Coutinho, P.J.G.; Martins, J.A.; Castanheira, E.M.S.; Ferreira, P.M.T. Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. Mater. Sci. Eng. C 2021, 122, 111869. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Lamers, C. Overcoming the shortcomings of peptide-based therapeutics. Future Drug Discov. 2022, 4, 2. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jervis, P.J.; Baptista, I.; Martins, L.; Pereira, D.M.; Martins, J.A.; Ferreira, P.M.T. Hydrogels and Nanostructures Formed from Ciprofloxacin–Peptide Conjugates. Mater. Proc. 2023, 14, 12. https://doi.org/10.3390/IOCN2023-14493
Jervis PJ, Baptista I, Martins L, Pereira DM, Martins JA, Ferreira PMT. Hydrogels and Nanostructures Formed from Ciprofloxacin–Peptide Conjugates. Materials Proceedings. 2023; 14(1):12. https://doi.org/10.3390/IOCN2023-14493
Chicago/Turabian StyleJervis, Peter J., Inês Baptista, Luciana Martins, David M. Pereira, José A. Martins, and Paula M. T. Ferreira. 2023. "Hydrogels and Nanostructures Formed from Ciprofloxacin–Peptide Conjugates" Materials Proceedings 14, no. 1: 12. https://doi.org/10.3390/IOCN2023-14493
APA StyleJervis, P. J., Baptista, I., Martins, L., Pereira, D. M., Martins, J. A., & Ferreira, P. M. T. (2023). Hydrogels and Nanostructures Formed from Ciprofloxacin–Peptide Conjugates. Materials Proceedings, 14(1), 12. https://doi.org/10.3390/IOCN2023-14493