Improving Predictive Maintenance Performance Using Machine Learning and Vibration Analysis Algorithms †
Abstract
1. Introduction
2. Revue of Literature
3. Materials and Methods
3.1. Data Collection & Preprocessing
3.2. Feature Extraction & Time Series Analysis
3.3. Model Implementation
- LSTM-GRU Hybrid Model: Used for sequence modelling and prediction of continuous variables.
- Random forest classifier: Used to classify faults based on feature predictions.
3.4. Experimental Setup and Test Bench
4. Results and Discussion
- The suggested hybrid model achieved 80% overall accuracy, showing the combined perfromance of LSTM-GRU and Random Forest classifier (see Figure 2).
- This shows that using AI in industrial systems can help to reduce times when machines are not being used and make maintenance planning better.
- The model accurately identifies fault types in 15 min, allowing maintenance teams to respond proactively. This timeframe was selected according to industry requirements to synchronize early fault identification with potential response durations, as illustrated in Figure 3:
Limitation and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehdi, A.; Hussain, A.; Haider, W.; Hassan, S.J.; Saad, M.; Kim, C.-H. Classification of Power System Faults Using Random Forests. Proc. Korean Inst. Electr. Eng. 2020, 69, 957–958. [Google Scholar]
- Schlemitz, A.; Mezhuyev, V. Approaches for data collection and process standardization in smart manufacturing: Systematic literature review. J. Ind. Inf. Integr. 2024, 38, 100578. [Google Scholar] [CrossRef]
- Ucar, A.; Karakose, M.; Kırımça, N. Artificial intelligence for predictive maintenance applications: Key components, trustworthiness, and future trends. Appl. Sci. 2024, 14, 898. [Google Scholar] [CrossRef]
- Elkateb, S.; Métwalli, A.; Shendy, A.; Abu-Elanien, A.E. Machine learning and IoT–Based predictive maintenance approach for industrial applications. Alex. Eng. J. 2024, 88, 298–309. [Google Scholar] [CrossRef]
- Çınar, Z.M.; Abdussalam Nuhu, A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability 2020, 12, 8211. [Google Scholar] [CrossRef]
- Theissler, A.; Pérez-Velázquez, J.; Kettelgerdes, M.; Elger, G. Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry. Reliab. Eng. Syst. Saf. 2021, 215, 107864. [Google Scholar] [CrossRef]
- Paolanti, M.; Romeo, L.; Felicetti, A.; Mancini, A.; Frontoni, E.; Loncarski, J. Machine learning approach for predictive maintenance in industry 4.0. In Proceedings of the 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Oulu, Finland, 2–4 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Kane, A.P.; Kore, A.S.; Khandale, A.N.; Nigade, S.S.; Joshi, P.P. Predictive Maintenance using Machine Learning. arXiv 2022, arXiv:2205.09402. [Google Scholar]
- Nacchia, M.; Fruggiero, F.; Lambiase, A.; Bruton, K. A systematic mapping of the advancing use of machine learning techniques for predictive maintenance in the manufacturing sector. Appl. Sci. 2021, 11, 2546. [Google Scholar] [CrossRef]
- Keleko, A.T.; Kamsu-Foguem, B.; Ngouna, R.H.; Tongne, A. Artificial intelligence and real-time predictive maintenance in industry 4.0: A bibliometric analysis. AI Ethics 2022, 2, 553–577. [Google Scholar] [CrossRef]
- Lee, W.J.; Wu, H.; Yun, H.; Kim, H.; Jun, M.B.; Sutherland, J.W. Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia Cirp 2019, 80, 506–511. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elharnaf, I.; Achtaich, K.; Tetouani, S. Improving Predictive Maintenance Performance Using Machine Learning and Vibration Analysis Algorithms. Eng. Proc. 2025, 97, 45. https://doi.org/10.3390/engproc2025097045
Elharnaf I, Achtaich K, Tetouani S. Improving Predictive Maintenance Performance Using Machine Learning and Vibration Analysis Algorithms. Engineering Proceedings. 2025; 97(1):45. https://doi.org/10.3390/engproc2025097045
Chicago/Turabian StyleElharnaf, Ibtissam, Khadija Achtaich, and Samir Tetouani. 2025. "Improving Predictive Maintenance Performance Using Machine Learning and Vibration Analysis Algorithms" Engineering Proceedings 97, no. 1: 45. https://doi.org/10.3390/engproc2025097045
APA StyleElharnaf, I., Achtaich, K., & Tetouani, S. (2025). Improving Predictive Maintenance Performance Using Machine Learning and Vibration Analysis Algorithms. Engineering Proceedings, 97(1), 45. https://doi.org/10.3390/engproc2025097045