Enhanced Supplier Clustering Using an Improved Arithmetic Optimizer Algorithm †
Abstract
1. Introduction
- How can the Arithmetic Optimizer Algorithm be effectively applied to supplier clustering problems to address the limitations of traditional clustering methods?
- Does the AOA maintain robust performance on large-scale supplier data with over 12 conflicting criteria?
- What are the practical implications and challenges of implementing the AOA-based clustering framework in real-world supplier segmentation and industrial decision-making processes?
- How can the insights from AOA-based supplier segments be translated into effective supplier relationship management strategies?
2. Data Clustering in Supplier Segmentation
2.1. Theoretical Background
2.2. Problem Formulation
2.3. Performance Evaluation Metrics
2.3.1. Silhouette Coefficient
2.3.2. Davies–Bouldin Index
2.4. Supplier Performance Criteria
- Cost metrics:
- Unit price ();
- Total cost of ownership ();
- Payment terms ().
- Quality metrics:
- Defect rate ();
- Quality certification ();
- Process capability ().
- Delivery metrics:
- On-time delivery rate ();
- Lead time ();
- Flexibility ().
- Sustainability metrics:
- Environmental compliance ();
- Social responsibility ();
- Innovation capability ().
2.5. Data Preprocessing
3. Arithmetic Optimizer Algorithm for Supplier Clustering
3.1. Standard Arithmetic Optimization Algorithm
- is the updated position of the i-th solution in dimension j;
- represents the best solution found so far in dimension j;
- (Math Optimizer Probability) controls the exploration–exploitation balance;
- (Math Optimizer Accelerated) determines the selection of operators;
- and are the upper and lower bounds of dimension j;
- is a random number in [0, 1];
- is a small constant to avoid division by zero.
3.2. Algorithm Implementation
- Initialize population ;
- Define clustering objective function ;
- For each iteration to T:
- Return best clustering solution .
4. AOA-Based Supplier Clustering
4.1. Solution Representation
4.2. Objective Function
4.3. AOA Clustering Algorithm
- Generate an initial population of N solutions randomly within the performance criteria bounds using Equation (12):
- Update the Math Optimizer Probability () based on the current iteration, as defined in Equation (9).
- For each solution , update its position using Equation (8).
- Assign each supplier to the nearest centroid using Equation (13):
4.4. Implementation Details
- Initialize a population of candidate solutions;
- While termination criteria not met:
- (a)
- Calculate fitness for each solution using WCSS;
- (b)
- Update MOP based on the current iteration;
- (c)
- For each solution:
- i.
- Update position using arithmetic operators;
- ii.
- Assign suppliers to nearest centroids;
- iii.
- Evaluate new solution fitness.
- (d)
- Update best solution if improved.
- Return best clustering solution.
5. Experimental Results and Discussion
5.1. Experimental Setup
- Population size: 100;
- Maximum iterations: 500;
- Number of independent runs: 40;
- Algorithm-specific parameters for AOA:
- –
- = 0.2;
- –
- = 0.9;
- –
- = 0.5.
5.2. Benchmark Datasets Evaluation
- It achieves near-optimal or optimal WCSS values across all datasets;
- It shows strong average performance compared to most metaheuristic algorithms;
- It demonstrates good stability with a relatively low standard deviation;
- It exhibits particularly strong performance on the Cancer dataset with the best metrics in all categories.
5.3. Supplier Clustering Analysis
5.3.1. Convergence Analysis
- Good convergence rate, reaching near-optimal solutions within approximately 200 iterations compared to 300+ iterations for several other algorithms;
- Effective final solutions, with the AOA converging to a WCSS value of 16,500, representing a 28.3% improvement over the GA (23,000);
- Stable convergence trajectory with moderate oscillations, indicating a reasonable balance between exploration and exploitation phases;
- Effective optimization capability through the systematic application of arithmetic operators.
5.3.2. Clustering Quality Metrics
- Silhouette coefficient: The AOA achieves a 10.6% improvement compared to the next best algorithm, GWO (0.565 vs. 0.511), indicating better cluster cohesion and separation.
- Davies–Bouldin index: The AOA shows a 7.5% reduction compared to GWO (0.566 vs. 0.612), confirming better inter-cluster separation relative to intra-cluster dispersion.
- Calinski–Harabasz index: The AOA delivers a 5.6% improvement over GWO (765.1 vs. 724.5), demonstrating a better ratio of between-cluster to within-cluster dispersion.
- Dunn index: The AOA exhibits a 10.1% improvement compared to GWO (0.152 vs. 0.138), indicating more compact and well-separated clusters.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, J.; Shin, K.; Chang, T.W.; Park, J. An integrative framework for supplier relationship management. Ind. Manag. Data Syst. 2010, 110, 495–515. [Google Scholar] [CrossRef]
- Chai, J.; Liu, J.N.K.; Ngai, E.W.T. Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Syst. Appl. 2013, 40, 3872–3885. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Shukla, A.K.; Agbaje, M.B.; Oyelade, O.N.; José-García, A.; Agushaka, J.O. Metaheuristics: A comprehensive overview and classification along with bibliometric analysis. Artif. Intell. Rev. 2021, 55, 4237–4316. [Google Scholar] [CrossRef]
- Rezaei, J.; Ortt, R. Multi-criteria supplier segmentation using a fuzzy preference relations based AHP. Eur. J. Oper. Res. 2013, 225, 75–84. [Google Scholar] [CrossRef]
- Kannan, D.; Khodaverdi, R.; Olfat, L.; Jafarian, A.; Diabat, A. Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain. J. Clean. Prod. 2013, 47, 355–367. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965 and 27 December 1965–7 January 1966; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Arithmetic Optimization Algorithm: Fundamentals, Applications, Challenges, and Future Directions. IEEE Access 2022, 10, 104973–104998. [Google Scholar]
- Oucheikh, R.; Touil, A.; Fri, M. Data clustering using two-stage Eagle Strategy based on Slime Mould Algorithm. J. Comput. Sci. 2022, 18, 1062–1084. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, K. Adaptive parameter control in metaheuristic algorithms for optimization: A comprehensive survey. Eng. Appl. Artif. Intell. 2022, 115, 105291. [Google Scholar]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms, 2nd ed.; Luniver Press: Frome, UK, 2010; pp. 81–96. [Google Scholar]
- Lima-Junior, F.R.; Carpinetti, L.C.R. Combining SCOR® model and fuzzy TOPSIS for supplier evaluation and management. Int. J. Prod. Econ. 2016, 174, 128–141. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris Hawks Optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J.M.; Perona, I. An extensive comparative study of cluster validity indices. Pattern Recognit. 2013, 46, 243–256. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 1, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2015, 27, 495–513. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2020, 80, 8091–8126. [Google Scholar] [CrossRef] [PubMed]
Dataset | Metric | AOA | GWO | WOA | HHO | MVO | GA |
---|---|---|---|---|---|---|---|
Iris | Best | 97.10 | 96.66 | 97.22 | 96.81 | 96.66 | 96.66 |
Average | 102.43 | 103.05 | 110.72 | 106.76 | 100.66 | 96.93 | |
Worst | 124.36 | 125.21 | 129.42 | 127.70 | 124.91 | 97.27 | |
Std | 8.95 | 10.49 | 12.56 | 12.13 | 7.76 | 0.27 | |
Seeds | Best | 311.92 | 312.20 | 339.57 | 319.91 | 311.86 | 311.80 |
Average | 312.24 | 312.92 | 379.17 | 364.97 | 322.66 | 311.80 | |
Worst | 313.56 | 318.09 | 444.15 | 430.09 | 359.32 | 311.82 | |
Std | 0.47 | 1.06 | 28.95 | 27.33 | 12.88 | 0.00 | |
Cancer | Best | 2964.39 | 2964.40 | 2966.07 | 3107.95 | 2965.74 | 2964.46 |
Average | 2964.40 | 2964.43 | 2978.31 | 3500.07 | 3008.82 | 2983.39 | |
Worst | 2964.42 | 2964.53 | 3003.09 | 4160.46 | 3212.54 | 3076.66 | |
Std | 0.01 | 0.02 | 7.76 | 227.25 | 60.17 | 30.36 |
Dataset | AOA vs. GWO | AOA vs. WOA | AOA vs. HHO | AOA vs. MVO | AOA vs. GA |
---|---|---|---|---|---|
Iris | 3.35 × 10−4 | 1.10 × 10−6 | 1.85 × 10−5 | 0.09 | 6.29 × 10−3 |
Seeds | 3.02 × 10−5 | 3.02 × 10−9 | 3.02 × 10−8 | 3.02 × 10−6 | 7.25 × 10−4 |
Cancer | 3.02 × 10−2 | 3.02 × 10−8 | 3.02 × 10−9 | 3.02 × 10−8 | 6.79 × 10−4 |
Algorithm | Silhouette | Davies–Bouldin | Calinski–Harabasz | Dunn |
---|---|---|---|---|
Coefficient ↑ | Index ↓ | Index ↑ | Index ↑ | |
AOA | 0.565 | 0.566 | 765.1 | 0.152 |
GWO | 0.511 | 0.612 | 724.5 | 0.138 |
WOA | 0.489 | 0.638 | 685.2 | 0.127 |
SSA | 0.472 | 0.657 | 642.7 | 0.119 |
HHO | 0.464 | 0.685 | 618.4 | 0.106 |
MVO | 0.453 | 0.723 | 589.1 | 0.098 |
GA | 0.429 | 0.795 | 562.6 | 0.082 |
Metric | vs. GWO | vs. WOA | vs. SSA | vs. HHO | vs. MVO |
---|---|---|---|---|---|
WCSS | 2.81 × 10−7 | 1.10 × 10−6 | 3.02 × 10−8 | 3.02 × 10−9 | 1.85 × 10−6 |
Silhouette | 3.02 × 10−8 | 3.02 × 10−9 | 3.02 × 10−9 | 3.02 × 10−10 | 3.02 × 10−9 |
Davies–Bouldin | 4.68 × 10−7 | 3.02 × 10−8 | 3.02 × 10−8 | 3.02 × 10−9 | 3.02 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akiki, A.; Douaioui, K.; Touil, A.; Ahlaqqach, M.; El Bakkali, M. Enhanced Supplier Clustering Using an Improved Arithmetic Optimizer Algorithm. Eng. Proc. 2025, 97, 44. https://doi.org/10.3390/engproc2025097044
Akiki A, Douaioui K, Touil A, Ahlaqqach M, El Bakkali M. Enhanced Supplier Clustering Using an Improved Arithmetic Optimizer Algorithm. Engineering Proceedings. 2025; 97(1):44. https://doi.org/10.3390/engproc2025097044
Chicago/Turabian StyleAkiki, Asmaa, Kaoutar Douaioui, Achraf Touil, Mustapha Ahlaqqach, and Mhammed El Bakkali. 2025. "Enhanced Supplier Clustering Using an Improved Arithmetic Optimizer Algorithm" Engineering Proceedings 97, no. 1: 44. https://doi.org/10.3390/engproc2025097044
APA StyleAkiki, A., Douaioui, K., Touil, A., Ahlaqqach, M., & El Bakkali, M. (2025). Enhanced Supplier Clustering Using an Improved Arithmetic Optimizer Algorithm. Engineering Proceedings, 97(1), 44. https://doi.org/10.3390/engproc2025097044