Fabrication and Characterization of Perovskite Solar Cells Using Metal Phthalocyanines and Naphthalocyanines †
Abstract
1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rezaee, E.; Khan, D.; Cai, S.; Dong, L.; Xiao, H.; Ravi, S.; Silva, P.; Liu, X.; Xu, Z.-X. Phthalocyanine in perovskite solar cells: A review. Mater. Chem. Front. 2023, 7, 1704. [Google Scholar] [CrossRef]
- Molina, D.; Follana-Berná, J.; Sastre-Santos, Á. Phthalocyanines, porphyrins and other porphyrinoids as components of perovskite solar cells. J. Mater. Chem. C 2023, 11, 7885–7919. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, T.; Bao, Z.; Liu, H.; Lv, Y.; Guo, X.; Liu, X.; Chang, Y.; Li, B. Simultaneous defect passivation and energy level modulation by multifunctional phthalocyanine for efficient and stable perovskite solar cells. Chem. Eng. J. 2023, 459, 141573. [Google Scholar] [CrossRef]
- Ans, M.; Biyiklioglu, Z.; Mahapatra, A.; Chavan, R.D.; Kruszyńska, J.; Unal, M.; Fazlı, H.; Nikiforow, K.; Yadav, P.; Akin, S.; et al. Revealing the impact of aging on perovskite solar cells employing nickel phthalocyanine-based hole transporting material. Adv. Sci. 2024, 11, 2405284. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Labella, J.; Demircioglu, P.K.; Escribano, M.P.; Calbo, J.; Asiri, A.M.; Ortí, E.; Ince, M.; Nazeeruddin, M.K.; Torres, T. Cu(II) and Ni(II) phthalocyanine-based hole-transporting materials for stable perovskite solar cells with efficiencies reaching 20.0%. Sol. RRL 2024, 8, 2400371. [Google Scholar] [CrossRef]
- Liao, Z.; Biyiklioglu, Z.; Yang, L.; Baş, H.; Dong, P.; Hu, J.; Deng, J.; Li, X.; Gao, Y.; Güzel, E.; et al. Two-dimensional phthalocyanine-based molecular additives realize efficient hole transport and enhanced ion immobilization for durable perovskite solar cells. Chem. Eng. J. 2024, 492, 151682. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Ge, H.; Li, A.; Wang, X.-F. Recent research progress and perspectives on porphyrin and phthalocyanine analogues for perovskite solar cell applications. Energy Fuels 2024, 38, 13685–13703. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Wang, S.; Bao, H.; Zhang, F.; Li, X. Extended near-infrared photovoltaic responses of perovskite solar cells by p-type phthalocyanine derivative. Adv. Funct. Mater. 2022, 32, 2208539. [Google Scholar] [CrossRef]
- Qu, G.; Dong, L.; Qiao, Y.; Khan, D.; Chen, Q.; Xie, P.; Yu, X.; Liu, X.; Wang, Y.; Chen, J.; et al. Dopant-free phthalocyanine hole conductor with thermal-induced holistic passivation for stable perovskite solar cells with 23% efficiency. Adv. Funct. Mater. 2022, 32, 2206585. [Google Scholar] [CrossRef]
- Gassara, M.; Garcés, J.G.; Lezama, L.; Ortiz, J.; Lázaro, F.F.; Kazim, S.; Santos, Á.S.; Ahmad, S. Dopant-free tert-butyl Zn(ii) phthalocyanines: The impact of substitution on their photophysical properties and their role in perovskite solar cells. J. Mater. Chem. C 2024, 13, 1704–1712. [Google Scholar] [CrossRef]
- Haider, M.; Mudasar, F.; Yang, J.; Makarov, S. Interface engineering by unsubstituted pristine nickel phthalocyanine as hole transport material for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 2024, 16, 49465–49473. [Google Scholar] [CrossRef]
- Ogawa, C.; Suzuki, A.; Oku, T.; Fukunishi, S.; Tachikawa, T.; Hasegawa, T. Metallophtalocyanine used interface engineering for improving long-term stability of methylammonium lead triiodide perovskite. Phys. Status Solidi A 2023, 220, 2300038. [Google Scholar] [CrossRef]
- Çelik, G.G.; Şahin, A.N.; Lafzi, F.; Saracoglu, N.; Altındal, A.; Gürek, A.G.; Atilla, D. Triphenylamine substituted copper and zinc phthalocyanines as alternative hole-transporting materials for solution-processed perovskite solar cells. Dalton Trans. 2022, 51, 9385–9396. [Google Scholar] [CrossRef]
- Le, T.-H.; Tran, N.-A.; Fujii, A.; Ozaki, M.; Dao, Q.-D. Effects of p-type dopant on photovoltaic performance of pervoskite solar cells using phthalocyanine-tetrabenzoporphyrin hole transport materials: A combined theoretical and experimental study. Thin Solid Films 2023, 787, 140134. [Google Scholar] [CrossRef]
- Suzuki, A.; Ohashi, N.; Oku, T.; Tachikawa, T.; Hasegawa, T.; Fukunishi, S. Effects of metal phthalocyanine and naphthalocyanine on perovskite solar cells. J. Electron. Mater. 2024, 53, 6049–6063. [Google Scholar] [CrossRef]
- Suzuki, A.; Hasegawa, R.; Funayama, K.; Oku, T.; Okita, M.; Fukunishi, S.; Tachikawa, T.; Hasegawa, T. Additive effects of CuPcX4-TCNQ on CH3NH3PbI3 perovskite solar cells. J. Mater. Sci Mater. Electron. 2023, 34, 588. [Google Scholar] [CrossRef]
- Pandey, A.; Shriwastav, M.; Dwivedi, D.K.; Lohia, P.; Agarwal, S.; Alsaif, F.; Hossain, M.K. Configurational design of NiPc derivative as electron transport material for stable and efficient perovskite solar cell: DFT and SCAPS-1D framework. J. Phys. Chem. Solids 2024, 194, 112239. [Google Scholar] [CrossRef]
- Kim, H.; Lee, D.Y.; Lim, J.; Kim, J.; Park, J.; Seidel, J.; Yun, J.S.; Seok, S.I. Enhancing stability and efficiency of perovskite solar cells with a bilayer hole transporting layer of nickel phthalocyanine and poly(3-hexylthiophene). Adv. Energy Mater. 2023, 13, 2301046. [Google Scholar] [CrossRef]
- Qiang, Y.; Cao, H.; Pan, Y.; Chi, Y.; Zhao, L.; Yang, Y.; Li, H.-B.; Gao, Y.; Sun, L.; Yu, Z. Copper naphthalocyanine-based hole-transport material for high-performance and thermally stable perovskite solar cells. Sci. China Chem. 2024, 67, 2701–2709. [Google Scholar] [CrossRef]
- Gong, S.; Qu, G.; Qiao, Y.; Wen, Y.; Huang, Y.; Cai, S.; Zhang, L.; Jiang, K.; Liu, S.; Lin, M.; et al. A hot carrier perovskite solar cell with efficiency exceeding 27% enabled by ultrafast hot hole transfer with phthalocyanine derivatives. Energy Environ. Sci. 2024, 17, 5080–5090. [Google Scholar] [CrossRef]
- Klipfel, N.; Xia, J.; Čulík, P.; Orlandi, S.; Cavazzini, M.; Shibayama, N.; Kanda, H.; Igci, C.; Li, W.; Cheng, Y.-B.; et al. Zn(II) and Cu(II) tetrakis(diarylamine)phthalocyanines as hole-transporting materials for perovskite solar cells. Mater. Today Energy 2022, 29, 101110. [Google Scholar] [CrossRef]
- Pindolia, G.; Pandya, J.; Shinde, S.; Jha, P.K. Fluorinated copper phthalocyanine as an electron transport material in perovskite solar cell. Int. J. Energy Res. 2022, 46, 15127–15142. [Google Scholar] [CrossRef]
- Srivastavaa, A.; Sharma, A.K.; Jha, P.K.; Kumar, M.; Chourasia, N.K.; Chourasia, R.K. Parametric optimization for the performance analysis of novel hybrid organo-perovskite solar cell via SCAPS-1D simulation. Heliyon 2024, 10, e38169. [Google Scholar] [CrossRef]
- Mashiyama, H.; Kurihara, Y.; Azetsu, T. Disordered cubic perovskite structure of CH3NH3PbX3 (X = Cl, Br, I). J. Korean Phys. Soc. 1998, 32, S156–S158. [Google Scholar]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361–362, 527–532. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Q.; Zheng, Y.; Li, R.; Peng, T. An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells. J. Power Sources 2017, 359, 303–310. [Google Scholar] [CrossRef]
Devices | Jsc (mA cm−2) | Voc (V) | FF | Rs (Ω cm2) | Rsh (Ω cm2) | η (%) | ηave (%) |
---|---|---|---|---|---|---|---|
MAPbI3 | 19.5 | 0.802 | 0.664 | 3.67 | 7450 | 10.7 | 9.03 |
+NiPc | 21.1 | 0.885 | 0.726 | 2.58 | 38,900 | 13.4 | 11.5 |
+ZnPc | 15.3 | 0.760 | 0.535 | 3.48 | 327 | 6.71 | 4.70 |
+PdPc | 13.1 | 0.615 | 0.430 | 3.28 | 209 | 3.47 | 2.88 |
+CuNc | 19.1 | 0.873 | 0.689 | 4.45 | 7790 | 11.4 | 9.33 |
+ZnNc | 16.3 | 0.840 | 0.586 | 3.09 | 306 | 8.03 | 5.64 |
NiPc | Voc (V) | Jsc (mA cm−2) | FF | η (%) |
---|---|---|---|---|
Exp. | 0.865 | 21.5 | 0.627 | 11.6 |
Calc. | 1.092 | 22.9 | 0.463 | 11.6 |
FTO | TiO2 | MAPbI3 | NiPc | Spiro-OMeTAD | |
---|---|---|---|---|---|
Thickness (nm) | 250 | 400 | 500 | 60 | 100 |
Bandgap (eV) | 3.50 | 3.2 | 1.55 | 1.70 | 2.9 |
Electron affinity (eV) | 4.40 | 4.00 | 3.75 | 3.06 | 2.2 |
Dielectric permittivity (relative) | 9.00 | 100 | 22.0 | 6.392 | 3.0 |
CB effective density of state (1/cm3) | 2.2 × 1018 | 1.0 × 1020 | 3.1 × 1019 | 2.5 × 1020 | 2.5 × 1020 |
VB effective density of state (1/cm3) | 1.8 × 1019 | 1.0 × 1020 | 3.1 × 1018 | 2.5 × 1020 | 2.5 × 1020 |
Electron thermal velocity (cm/s) | 1.0 × 107 | 1.0 × 107 | 1.0 × 107 | 1.0 × 107 | 1.0 × 107 |
Hole thermal velocity (cm/s) | 1.0 × 107 | 1.0 × 107 | 1.0 × 107 | 1.0 × 107 | 1.0 × 107 |
Electron mobility (cm/V s) | 2.0 × 103 | 50 | 7.80 | 1.23 × 10−4 | 3.5 × 10−4 |
Hole mobility (cm/V s) | 1.0 × 102 | 50 | 7.80 | 4.97 × 10−2 | 4.0 × 10−3 |
Donor density (1/cm3) | 2.0 × 1019 | 1.0 × 1018 | 0 | 0 | 0 |
Acceptor density (1/cm3) | 0 | 0 | 1.0 × 1016 | 1.0 × 1018 | 1.0 × 1019 |
Defect density (1/cm3) | 1.0 × 1015 | 1.5 × 1017 | 9.3 × 1015 | 1.0 × 1015 | 1.0 × 1016 |
ZnPc | Voc (V) | Jsc (mA cm−2) | FF | η (%) |
---|---|---|---|---|
Exp. | 0.760 | 15.3 | 0.535 | 6.20 |
Calc. | 0.795 | 15.6 | 0.510 | 6.30 |
MAPbI3 | ZnPc | |
---|---|---|
Bandgap (eV) | 1.55 | 2.20 |
Electron Affinity (eV) | 3.75 | 3.06 |
Dielectric permittivity | 22.0 | 6.39 |
CB effective density of state (cm3) | 3.1 × 1018 | 2.7 × 1027 |
VB effective density of state (cm3) | 3.1 × 1018 | 2.7 × 1027 |
Electron mobility (cm2/V) | 7.80 | 1.23 × 10−4 |
Hole mobility (cm2/V) | 7.40 | 1.10 × 10−2 |
Donor density (1/cm3) | 1.0 × 1015 | 0 |
Acceptor density (1/cm3) | 1.0 × 1015 | 1.0 × 1018 |
Defect density (1/cm3) | 1.43 × 1018 | 8.40 × 1016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, A.; Ohashi, N.; Oku, T.; Tachikawa, T.; Hasegawa, T.; Fukunishi, S. Fabrication and Characterization of Perovskite Solar Cells Using Metal Phthalocyanines and Naphthalocyanines. Eng. Proc. 2025, 87, 6. https://doi.org/10.3390/engproc2025087006
Suzuki A, Ohashi N, Oku T, Tachikawa T, Hasegawa T, Fukunishi S. Fabrication and Characterization of Perovskite Solar Cells Using Metal Phthalocyanines and Naphthalocyanines. Engineering Proceedings. 2025; 87(1):6. https://doi.org/10.3390/engproc2025087006
Chicago/Turabian StyleSuzuki, Atsushi, Naoki Ohashi, Takeo Oku, Tomoharu Tachikawa, Tomoya Hasegawa, and Sakiko Fukunishi. 2025. "Fabrication and Characterization of Perovskite Solar Cells Using Metal Phthalocyanines and Naphthalocyanines" Engineering Proceedings 87, no. 1: 6. https://doi.org/10.3390/engproc2025087006
APA StyleSuzuki, A., Ohashi, N., Oku, T., Tachikawa, T., Hasegawa, T., & Fukunishi, S. (2025). Fabrication and Characterization of Perovskite Solar Cells Using Metal Phthalocyanines and Naphthalocyanines. Engineering Proceedings, 87(1), 6. https://doi.org/10.3390/engproc2025087006