Antioxidant Potential of Colebrookea oppositifolia Sm. Extracts: An In Vitro Screening Study †
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Procurement and Extraction
2.2. Chemicals Used
2.3. Antioxidant Assay
2,2-Diphenyl-2-Picryl-Hydrazyl Radical Scavenging (DPPH) Assay
3. Results
3.1. Percentage Yield of Plant Extract
3.2. Antioxidant Assay (DPPH Assay)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
TBI | Traumatic brain injury |
NFTs | Neurofibrillary tangles |
Aβ | Amyloid beta |
DPPH | 2,2-diphenyl-2-picryl-hydrazyl |
References
- Urbańska, K.; Szcześniak, D.; Rymaszewska, J. The stigma of dementia. Postępy Psychiatr. I Neurol. 2015, 24, 225–230. [Google Scholar] [CrossRef]
- Tan, C.C.; Yu, J.T.; Wang, H.F.; Tan, M.S.; Meng, X.F.; Wang, C.; Jiang, T.; Zhu, X.-C.; Tan, L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimer’s Dis. 2014, 41, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Kalra, S.; Bhatia, S.; Al Harrasi, A.; Singh, G.; Mohan, S.; Makeen, H.A.; Albratty, M.; Meraya, A.; Bahar, B.; et al. Overview of therapeutic targets in management of dementia. Biomed. Pharmacother. 2022, 152, 113168. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Jack, C.R., Jr.; Wiste, H.J.; Weigand, S.D.; Vemuri, P.; Lowe, V.; Kantarci, K.; Gunter, J.L.; Senjem, M.L.; Ivnik, R.J.; et al. Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology 2012, 78, 1576–1582. [Google Scholar] [CrossRef] [PubMed]
- Price, J.L.; Morris, J.C. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 1999, 45, 358–368. [Google Scholar] [CrossRef]
- Kalra, S.; Malik, R.; Singh, G.; Bhatia, S.; Al-Harrasi, A.; Mohan, S.; Albratty, M.; Albarrati, A.; Tambuwala, M.M. Pathogenesis and management of traumatic brain injury (TBI): Role of neuroinflammation and anti-inflammatory drugs. Inflammopharmacology 2022, 30, 1153–1166. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Yu, J.T.; Tian, Y.; Tan, L. Epidemiology and etiology of Alzheimer’s disease: From genetic to non-genetic factors. Curr. Alzheimer Res. 2013, 10, 852–867. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Kalra, S.; Singh, G.; Gahlot, V.; Kajal, A. Antioxidative and neuroprotective potential of Acorus calamus Linn. and Cordia dichotoma G. Forst. In Alzheimer’s type dementia in rodent. Brain Res. 2024, 1822, 148616. [Google Scholar] [CrossRef] [PubMed]
- Hooda, P.; Malik, R.; Bhatia, S.; Al-Harrasi, A.; Najmi, A.; Zoghebi, K.; Halawi, M.A.; Makeen, H.A.; Mohan, S. Phytoimmunomodulators: A review of natural modulators for complex immune system. Heliyon 2023, 10, e23790. [Google Scholar] [CrossRef] [PubMed]
- Pluta, R.; Furmaga-Jabłońska, W.; Januszewski, S.; Czuczwar, S.J. Post-ischemic brain neurodegeneration in the form of Alzheimer’s disease proteinopathy: Possible therapeutic role of curcumin. Nutrients 2022, 14, 248. [Google Scholar] [CrossRef] [PubMed]
- Oken, B.S.; Storzbach, D.M.; Kaye, J.A. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch. Neurol. 1998, 55, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Stough, C.; Downey, L.A.; Lloyd, J.; Silber, B.; Redman, S.; Hutchison, C.; Wesnes, K.; Nathan, P.J. Examining the nootropic effects of a special extract of Bacopa monniera on human cognitive functioning: 90 day double-blind placebo-controlled randomized trial. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2008, 22, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.Y.; Farooqui, T.; Koh, H.L.; Farooqui, A.A.; Ling, E.A. Protective effects of ginseng on neurological disorders. Front. Aging Neurosci. 2015, 7, 129. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.S.; Thomas, R.G.; Craft, S.; Van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S.; et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015, 85, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Kuboyama, T.; Tohda, C.; Komatsu, K. Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biol. Pharm. Bull. 2014, 37, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Perfumi, M.; Mattioli, L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2007, 21, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Ren, Q.; Wu, L. The pharmacokinetic property and pharmacological activity of acteoside: A review. Biomed. Pharmacother. 2022, 153, 113296. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Pu, X. Neuroprotective effect of acteoside against rotenone-induced damage of SH-SY5Y cells and its possible mechanism. Chin. Pharmacol. Bull. 1987, 12, wpr-560973. [Google Scholar]
- Gao, L.; Wang, D.; Ren, J.; Tan, X.; Chen, J.; Kong, Z.; Nie, Y.; Yan, M. Acteoside ameliorates learning and memory impairment in APP/PS1 transgenic mice by increasing Aβ degradation and inhibiting tau hyperphosphorylation. Phytother. Res. 2024, 38, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef] [PubMed]
First Sample | Solvent Used | Sample Weight | Final Extract Obtained | Percentage Yield (w/w) |
---|---|---|---|---|
Aerial part | Ethanol | 500 g | 69 g | 13.80 |
Second Sample | Solvent Used | Sample Weight | Final Extract Obtained | Percentage Yield (w/w) |
---|---|---|---|---|
Roots | Ethanol | 500 g | 70.5 g | 14.10 |
Antioxidant DPPH Assay | ||||
---|---|---|---|---|
Concentration (μg/mL) | Percentage (%) Inhibition | |||
Standard Ascorbic Acid IC50 Value: 315.76 | Root Extract IC50 Value: 423.62 | Aerial Plant IC50 Value: 486.39 | %RSA | |
0 | 0 | 0 | 0 | 0 |
100 | 27.5 | 21.4 | 19.2 | 72.5 |
200 | 40.8 | 30.5 | 25.4 | 79.6 |
300 | 52.4 | 38.6 | 32.1 | 82.53 |
400 | 60.5 | 47.2 | 41.8 | 84.87 |
500 | 68 | 55 | 50 | 86.4 |
Concentration (g/mL) | Values | Standard Ascorbic Acid | Values | Root Extract | Values | Aerial Plant | Values |
---|---|---|---|---|---|---|---|
Mean | 250 | Mean | 41.53 | Mean | 32.11 | Mean | 28.08 |
Standard Error | 76.37 | Standard Error | 10.16 | Standard Error | 8.04 | Standard Error | 7.20 |
Median | 250 | Median | 46.6 | Median | 34.55 | Median | 28.75 |
Standard Deviation | 187.08 | Standard Deviation | 24.902 | Standard Deviation | 19.70 | Standard Deviation | 17.66 |
Sample Variance | 35,000 | Sample Variance | 620.15 | Sample Variance | 388.42 | Sample Variance | 311.88 |
Kurtosis | −1.2 | Kurtosis | 0.390593 | Kurtosis | 0.268108824 | Kurtosis | 0.188460065 |
Skewness | 0 | Skewness | −0.92783 | Skewness | −0.73187945 | Skewness | −0.52811084 |
Sum | 1500 | Sum | 249.2 | Sum | 192.7 | Sum | 168.5 |
Confidence Level (95.0%) | 196.33 | Confidence Level (95.0%) | 26.13 | Confidence Level (95.0%) | 20.68 | Confidence Level (95.0%) | 18.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, R.; Mittal, A.; Kumar, P. Antioxidant Potential of Colebrookea oppositifolia Sm. Extracts: An In Vitro Screening Study. Eng. Proc. 2025, 87, 107. https://doi.org/10.3390/engproc2025087107
Malik R, Mittal A, Kumar P. Antioxidant Potential of Colebrookea oppositifolia Sm. Extracts: An In Vitro Screening Study. Engineering Proceedings. 2025; 87(1):107. https://doi.org/10.3390/engproc2025087107
Chicago/Turabian StyleMalik, Rohit, Arun Mittal, and Prashant Kumar. 2025. "Antioxidant Potential of Colebrookea oppositifolia Sm. Extracts: An In Vitro Screening Study" Engineering Proceedings 87, no. 1: 107. https://doi.org/10.3390/engproc2025087107
APA StyleMalik, R., Mittal, A., & Kumar, P. (2025). Antioxidant Potential of Colebrookea oppositifolia Sm. Extracts: An In Vitro Screening Study. Engineering Proceedings, 87(1), 107. https://doi.org/10.3390/engproc2025087107