A Computational Multiphysics Study of a Satellite Thruster †
Abstract
1. Introduction
2. Geometry
3. Materials and Methods
3.1. The CFD Model
3.2. CAD Model for Thermo-Structural Analysis
3.2.1. Operating Cycle
3.2.2. The Law of Decay of Heat Flux
4. Results and Discussion
Thermal-Stress Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyd, D.; VanGilder, B.D.; Beiting, E.J. Numerical and experimental investigations of rarefied flow in a small nozzle. AIAA J. 1996, 34, 2320–2326. [Google Scholar] [CrossRef]
- Hatta, S.; Aso, S. Numerical studies on effect of nozzle geometry and of flow continuity on thrust performance. In Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA, USA, 15–19 October 2001. Paper 01-193. [Google Scholar]
- Laure, S.; Heiermann, J.; Auweter-Kurtz, M.; Kurtz, H. Experimental and numerical investigation of a power augmented thermal arc jet. In Proceedings of the 37th Joint Propulsion Conference and Exhibit, Salt Lake City, UT, USA, 8–11 July 2001. AIAA Paper No. 2001-3923. [Google Scholar]
- Jugroot, M.; Harvey, J.K. Numerical modeling of neutral and charged particles within a gridded ion thruster. In Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA, USA, 15–19 October 2001. Paper 01-100. [Google Scholar]
- Mikellides, I.G.; Katz, I.; Goebel, D. Numerical simulation of the hollow cathode discharge plasma dynamics. In Proceedings of the 29th International Electric Propulsion Conference, Princeton, NJ, USA, 31 October–4 November 2005. Paper 05-200. [Google Scholar]
- Boyd, I.D.; Crofton, M.W. Modeling the plasma plume of a hollow cathode. J. Appl. Phys. 2004, 95, 3285–3296. [Google Scholar] [CrossRef]
- Blateau, V.; Martinez-Sanchez, M.; Batischev, O. A computational study of internal physics effects in a Hall thruster. In Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, IN, USA, 7–10 July 2002; AIAA American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1995. Paper No. 2002-4105. [Google Scholar]
- González-Bárcena, D.; Peinado-Pérez, L.; Fernández-Soler, A.; Pérez-Muñoz Á, G.; Álvarez-Romero, J.M.; Ayape, F.; Sanz-Andrés, Á. TASEC-Lab: A COTS-based CubeSat-like university experiment for characterizing the convective heat transfer in stratospheric balloon missions. Acta Astronaut. 2022, 196, 244–258. [Google Scholar] [CrossRef]
- Barnhart, D.J.; Vladimirova, T.; Sweeting, M.N. Very-small-satellite design for distributed space missions. J. Spacecr. Rocket. 2007, 44, 1294–1306. [Google Scholar] [CrossRef]
- Helvajian, H.; Robinson, E.Y. Micro- and Nanotechnology for Space Systems; The Aerospace Press: Los Angeles, CA, USA, 1997. [Google Scholar]
- Esper, J.; Panetta, P.V.; Ryschkewitsch, D.M.; Wiscombe, D.W.; Neeck, S. NASA-GSFC nano-satellite technology for earth science missions. Acta Astronaut. 2000, 46, 287–296. [Google Scholar] [CrossRef]
- Mueller, J.; Yang, E.; Green, A.; White, V. Design and fabrication of MEMS-based micropropulsion devices at JPL. In Proceedings of the SPIE 2001 Proceedings Volume 4558, Reliability, Testing, and Characterization of MEMS/MOEMS, San Francisco, CA, USA, 21–25 October 2001; SPIE: San Francisco, CA, USA; pp. 57–71. [Google Scholar] [CrossRef]
- Janson, S.W.; Helvajian, H.; Hansen, W.W.; Lodmell, L.J. Microthrusters for nanosatellites. In Proceedings of the Second International Conference on Integrated Micro Nanotechnology, Pasadena, CA, USA, 11–15 April 1999; The Aerospace Corporation: Pasadena, CA, USA, 1999. [Google Scholar]
- Ellis, R.A.; Keller, R.B., Jr. Solid Rocket Motor Nozzles; NASA: Cleveland, OH, USA, 1975.
- Johnston, J.R.; Signorelli, R.A.; Freche, J.C. Performance of Rocket Nozzle Materials with Several Solid Propellants; NASA: Cleveland, PH, USA, 1966.
- Maisonneuve, Y. Ablation of solid-fuel booster nozzle materials. Aerosp. Sci. Technol. 1997, 1, 277–289. [Google Scholar] [CrossRef]
- Turchi, A.; Bianchi, D.; Nasuti, F.; Onofri, M. A numerical approach for the study of the gas–surface interaction in carbon–phenolic solid rocket nozzles. Aerosp. Sci. Technol. 2013, 27, 25–31. [Google Scholar] [CrossRef]
- Su, J.-M.; Xie, Q.; Feng, J.; Zhu, Y.; Zhang, M.; Xiao, Z.-C. Evaluation of performance and function of graphite material for throat insert. J. Solid. Rocket. Technol. 2015, 38, 554–561. [Google Scholar]
- Nigar, B.; Dönmez, S.; Çöker, D.; Özerin, S. Understanding mechanical failure of graphite rocket nozzle throats under thermal stresses. Aerosp. Sci. Technol. 2021, 119, 107152. [Google Scholar] [CrossRef]
- Gomaa, A.R.; Huang, H. Thermo-structural analysis of steel-composite wall nozzle. Int. J. Model. Optim. 2016, 6, 261. [Google Scholar]
- Rovey, J.L.; Lyne, C.T.; Mundahl, A.J.; Rasmont, N.; Glascock, M.S.; Wainwright, M.J.; Berg, S.P. Review of multimode space propulsion. Prog. Aero. Sci. 2020, 118, A100627. [Google Scholar] [CrossRef]
- Erichsen, P. Performance evaluation of spacecraft propulsion systems in relation to mission impulse requirements. In Proceedings of the Second European Spacecraft Propulsion Conference, Noordwijk, The Netherlands, 27–29 May 1997; ESA SP-398. pp. 189–194. [Google Scholar]
- Sarritzu, A.; Lauck, F.; Werling, L.; Pasini, A. Assessment of propulsion system architectures for green propellants-based orbital stages. In Proceedings of the 73rd International Astronautical Congress, Paris, France, 18–22 September 2022; International Astronautical Federation: Paris, France, 2022. [Google Scholar]
- Santi, M.; Fagherazzi, M.; Barato, F.; Pavarin, D. Design and testing of a hydrogen peroxide bipropellant thruster. In AIAA Propulsion and Energy 2020 Forum; American Institute of Aeronautics and Astronautics: Reston, VI, USA, 2020. [Google Scholar]
- Sutton, G.P.; Biblarz, O. Rocket Propulsion Elements, 9th ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Erichsen, P.; Wolff, P. A software tool for the performance evaluation of spacecraft propulsion systems. In Proceedings of the Third International Conference on Spacecraft Propulsion, Cannes, France, 10–13 October 2000; ESA SP. Volume 465. [Google Scholar]
- Zakirov, V.; Zhang, H.-Y. A model for the operation of nitrous oxide monopropellant. Aerosp. Sci. Technol. 2008, 12, 318–323. [Google Scholar] [CrossRef]
- Haworth, D.C.; Pope, S.B. Transported Probability Density Function Methods for Reynolds-Averaged and Large-Eddy Simulations. In Fluid Mechanics and Its Applications; Springer: Dordrecht, The Netherlands, 2011; Volume 95. [Google Scholar]
Young’s Modulus [GPa] | Poisson’s Ratio [-] | T [K] | Plastic [GPa] | Strain [-] | T [K] | Density [kg/m3] |
---|---|---|---|---|---|---|
196 | 0.27 | 300 | 0.246 | 0 | 300 | 7800 |
183 | - | 422 | 0.544 | 0.49 | 300 | - |
165 | - | 500 | 0.153 | 0 | 600 | - |
147 | - | 588 | 0.433 | 0.49 | 600 | - |
113 | - | 773 | 0.1319 | 0 | 900 | - |
94.1 | - | 800 | 0.330 | 0.49 | 900 | - |
75.1 | - | 973 | 0.125 | 0 | 1200 | - |
42.9 | - | 1173 | 0.158 | 0.49 | 1200 | - |
Linear Expansion Coefficients [m/m K] | T [K] | Conductivity [W/m K] | T [K] | Specific Heat [J/kg K] | T [K] | |
1.13 × 10−5 | 294 | 18.25 | 300 | 420 | 300 | |
1.17 × 10−5 | 366 | 19.65 | 400 | - | 400 | |
1.19 × 10−5 | 477 | 22.3 | 600 | - | 600 | |
1.22 × 10−5 | 589 | 24.89 | 800 | - | 800 | |
1.22 × 10−5 | 774 | 30.82 | 1200 | - | 1200 |
Parameters | Values |
---|---|
Fuel Stream Rich Flammability Limit (stoichiometric 0.18) | 0.36 |
Gauge Pressure—Inlet Fuel—C3H6 | 1,470,000 Pa |
Gauge Pressure—Inlet Oxidiser—N2O | 7,200,000 Pa |
Temperature—Inlet Fuel | 300 K |
Temperature—Inlet Oxidiser | 300 K |
Operating Equilibrium Pressure | 100,000 Pa |
Outlet Pressure | 0 Pa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lepore, M.A.; Piller, M.; Guagliano, M.; Maligno, A.R. A Computational Multiphysics Study of a Satellite Thruster. Eng. Proc. 2025, 85, 14. https://doi.org/10.3390/engproc2025085014
Lepore MA, Piller M, Guagliano M, Maligno AR. A Computational Multiphysics Study of a Satellite Thruster. Engineering Proceedings. 2025; 85(1):14. https://doi.org/10.3390/engproc2025085014
Chicago/Turabian StyleLepore, Marcello A., Marzio Piller, Mario Guagliano, and Angelo R. Maligno. 2025. "A Computational Multiphysics Study of a Satellite Thruster" Engineering Proceedings 85, no. 1: 14. https://doi.org/10.3390/engproc2025085014
APA StyleLepore, M. A., Piller, M., Guagliano, M., & Maligno, A. R. (2025). A Computational Multiphysics Study of a Satellite Thruster. Engineering Proceedings, 85(1), 14. https://doi.org/10.3390/engproc2025085014