Maximizing Electromagnetic Energy Harvester Efficiency Through Optimized Magnetic Configurations for Wireless Sensor Networks †
Abstract
1. Introduction
2. Design
2.1. Design 1: Increase the Number of Magnets
2.2. Design 2: Add an Outer Pure Iron Ring Wall
2.3. Design 3: Magnet Arrangement in a Halbach Array
3. Results Analysis
Results Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foong, F.M.; Thein, C.K.; Yurchenko, D. A two-stage electromagnetic coupling and structural optimisation for vibration energy harvesters. Smart Mater. Struct. 2020, 29, 085030. [Google Scholar] [CrossRef]
- Brusa, E.; Carrera, A.; Delprete, C. A Review of Piezoelectric Energy Harvesting: Materials, Design, and Readout Circuits. Actuators 2023, 12, 457. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, Z.; Bai, X.; Wang, H.; Zhang, H.; Hao, J.; Wang, C. A review of the research on triboelectric separation technology. Miner. Eng. 2024, 216, 108901. [Google Scholar] [CrossRef]
- Bade, A.; Suresh Kumar, M. Wireless Sensor Network-Based Agriculture Field Monitoring Using Fuzzy Logic. In Proceedings of the International Conference on Futuristic Communication and Network Technologies, Chennai, Tamil Nadu, India, 10–11 December 2021; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Qian, J.; Jing, X. Wind-driven hybridized triboelectric-electromagnetic nanogenerator and solar cell as a sustainable power unit for self-powered natural disaster monitoring sensor networks. Nano Energy 2018, 52, 78–87. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Shi, Q.; He, T.; Chen, T.; Sun, L.; Dziuban, J.A.; Lee, C. Development of a Thermoelectric and Electromagnetic Hybrid Energy Harvester from Water Flow in an Irrigation System. Micromachines 2018, 9, 395. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Huang, Q.; Pan, G.; Chao, L.; Luo, Y.; Han, P. Effect of the odd and even number of blades on the hydrodynamic performance of a pre-swirl pumpjet propulsor. Phys. Fluids 2022, 34, 035120. [Google Scholar] [CrossRef]
- Weber, F.; Broeckmann, C.; Züch, V.; Jacobs, G.; Zimmermann, J.; Schröder, K.-U.; Bami, Y.; Jakumeit, J.; Bodenburg, M. Multi-domain optimization of cast iron components in wind turbines. Forsch. Im Ingenieurwesen 2023, 87, 39–50. [Google Scholar]
- Guo, S.; Gao, S.; Jin, L.; Du, X.; Wu, Q.; Shang, J. Characteristic Analysis, Simulation, and Experimental Comparison of Two Kinds of Circular Magnet Array in Energy Harvesting. Appl. Sci. 2022, 12, 1962. [Google Scholar] [CrossRef]
Design No. | Detailed Design | Magnetic Flux Density (T) |
---|---|---|
Design 1 | Increase Magnet Number | 0.0991 |
Design 2 | Add Pure Iron Wall | 0.1886 |
Design 3.1 | Halbach Array Arrangement 1 (90°) | 0.1902 |
Design 3.2 | Halbach Array Arrangement 2 (45°) | 0.1883 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Xu, T.; Yang, D.; Li, J.; Thein, C.K. Maximizing Electromagnetic Energy Harvester Efficiency Through Optimized Magnetic Configurations for Wireless Sensor Networks. Eng. Proc. 2024, 82, 104. https://doi.org/10.3390/ecsa-11-20450
Chen J, Xu T, Yang D, Li J, Thein CK. Maximizing Electromagnetic Energy Harvester Efficiency Through Optimized Magnetic Configurations for Wireless Sensor Networks. Engineering Proceedings. 2024; 82(1):104. https://doi.org/10.3390/ecsa-11-20450
Chicago/Turabian StyleChen, Jingyi, Tao Xu, Dunmin Yang, Jingfeng Li, and Chung Ket Thein. 2024. "Maximizing Electromagnetic Energy Harvester Efficiency Through Optimized Magnetic Configurations for Wireless Sensor Networks" Engineering Proceedings 82, no. 1: 104. https://doi.org/10.3390/ecsa-11-20450
APA StyleChen, J., Xu, T., Yang, D., Li, J., & Thein, C. K. (2024). Maximizing Electromagnetic Energy Harvester Efficiency Through Optimized Magnetic Configurations for Wireless Sensor Networks. Engineering Proceedings, 82(1), 104. https://doi.org/10.3390/ecsa-11-20450