Testing Sustainable 3D-Printed Battery Housings with DIC Technology †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Printers
2.2. Printing Setup and Measuring Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Wang, D.; Saeed, T. Multi-scale numerical approach to the polymer filling process in the weld line region. Facta Univ. Ser. Mech. Eng. 2022, 20, 363–380. [Google Scholar] [CrossRef]
- Fischer, S.; Szürke, S.K. Detection process of energy loss in electric railway vehicles. Facta Univ. Ser. Mech. Eng. 2023, 21, 81–99. [Google Scholar] [CrossRef]
- Safaei, B.; Onyibo, E.C.; Hurdoganoglu, D. Thermal buckling and bending analyses of carbon foam beams sandwiched by composite faces under axial compression. Facta Univ. Ser. Mech. Eng. 2022, 20, 589–615. [Google Scholar] [CrossRef]
- Nofar, M.; Utz, J.; Geis, N.; Altstädt, V.; Ruckdäschel, H. Foam 3D printing of thermoplastics: A symbiosis of additive manufacturing and foaming technology. Adv. Sci. 2022, 9, 2105701. [Google Scholar] [CrossRef] [PubMed]
- Pawar, A.; Ausias, G.; Corre, Y.M.; Grohens, Y.; Férec, J. Mastering the density of 3D printed thermoplastic elastomer foam structures with controlled temperature. Addit. Manuf. 2022, 58, 103066. [Google Scholar] [CrossRef]
- Sun, B.; Wu, L. Research progress of 3D printing combined with thermoplastic foaming. Front. Mater. 2022, 9, 1083931. [Google Scholar] [CrossRef]
- Peng, K.; Mubarak, S.; Diao, X.; Cai, Z.; Zhang, C.; Wang, J.; Wu, L. Progress in the preparation, properties, and applications of PLA and its composite microporous materials by supercritical CO2: A review from 2020 to 2022. Polymers 2022, 14, 4320. [Google Scholar] [CrossRef] [PubMed]
- Damanpack, A.R.; Sousa, A.; Bodaghi, M. Porous PLAs with controllable density by FDM 3D printing and chemical foaming agent. Micromachines 2021, 12, 866. [Google Scholar] [CrossRef] [PubMed]
- Tammaro, D.; Villone, M.M.; Maffettone, P.L. Microfoamed Strands by 3D Foam Printing. Polymers 2022, 14, 3214. [Google Scholar] [CrossRef] [PubMed]
- Trofimchuk, E.S.; Potseleev, V.V.; Khavpachev, M.A.; Moskvina, M.A.; Nikonorova, N.I. Polylactide-Based Porous Materials: Synthesis, Hydrolytic Degradation Features, and Application Areas. Polym. Sci. Ser. C 2021, 63, 199–218. [Google Scholar] [CrossRef]
- Marascio, M.G.M.; Antons, J.; Pioletti, D.P.; Bourban, P.E. 3D Printing of Polymers with Hierarchical Continuous Porosity. Adv. Mater. Technol. 2017, 2, 145. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Lu, X.; Xu, X.; Han, Y.; Wang, G. 3D Printing Thermoplastic Polyurethane Hierarchical Cellular Foam with Outstanding Energy Absorption Capability. Addit. Manuf. 2023, 76, 103770. [Google Scholar] [CrossRef]
- Székely, I.; Madarász, T.; Kémenes, H. Experimental Production of Environmental Filters Using 3D Printing (original title: Környezetipari Szűrők Kísérleti Előállítása 3D Nyomtatással). Hidrológiai Közlöny 2022, 102, 88–92. (In Hungarian) [Google Scholar]
- Anuar, H.; Ibrahim, M.; Jamaludin, K.R.; Yunus, W.M.Z.W.; Samsudin, S.A.; Hassan, M.Z.; Jamaludin, K.H.; Misri, S. Novel Soda Lignin/PLA/EPO Biocomposite: A Promising and Sustainable Material for 3D Printing Filament. Mater. Today Commun. 2023, 35, 106093. [Google Scholar] [CrossRef]
- Arockiam, A.J.; Subramanian, K.; Padmanabhan, R.G.; Selvaraj, R.; Bagal, D.K.; Rajesh, S. A Review on PLA with Different Fillers Used as a Filament in 3D Printing. Mater. Today Proc. 2022, 50, 2057–2064. [Google Scholar] [CrossRef]
- Tadi, S.P.; Maddula, S.S.; Mamilla, R.S. Sustainability Aspects of Composite Filament Fabrication for 3D Printing Applications. Renew. Sustain. Energy Rev. 2024, 189, 113961. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Gupta, M.K.; Singh, H. PLA-Based Biocomposites for Sustainable Products: A Review. Adv. Ind. Eng. Polym. Res. 2023, 6, 382–395. [Google Scholar] [CrossRef]
- Hasan, M.R.; Davies, I.J.; Pramanik, A.; John, M.; Biswas, W.K. Potential of Recycled PLA in 3D Printing: A Review. Sustain. Manuf. Serv. Econ. 2024, 3, 100020. [Google Scholar] [CrossRef]
- Szalai, S.; Herold, B.; Kurhan, D.; Németh, A.; Sysyn, M.; Fischer, S. Optimization of 3D Printed Rapid Prototype Deep Drawing Tools for Automotive and Railway Sheet Material Testing. Infrastructures 2023, 8, 43. [Google Scholar] [CrossRef]
- Szívós, B.F.; Szalai, S.; Fischer, S. Deformation Test of 3D Printed Battery Case Using DIC Technology. In Proceedings of the 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain, 19–21 July 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Szalai, S.; Szívós, B.F.; Fischer, S. Surface Preparation of 3D Printed Battery Housing Materials for DIC Measurements. In Proceedings of the 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain, 19–21 July 2023; pp. 1–5. [Google Scholar] [CrossRef]
Printer | Flashforge Creator Pro 2 | Creality Ender 3 S1 |
---|---|---|
Technology | Fused Filament Fabrication (FFF) | Fused deposition modeling (FDM) |
Build Volume | XYZ: 200 × 148 × 150 mm | XYZ: 220 × 220 × 270 mm |
Filament diameter | 1.75 mm | 1.75 mm |
Feeder type | Double Direct Drive Extruder | “Sprite” Dual-gear Direct Extruder |
Max. hot end temperature | 240 °C | 260 °C |
Max. heated bed temperature | 120 °C | 100 °C |
Print speed max. | 100 mm/s | 150 mm/s |
Slice thickness | 0.1–0.4 mm | 0.05–0.4 mm |
Print precision | ±0.2 mm | ±0.1 mm |
Filaticum | Foam |
---|---|
Nozzle temperature | 190–250 °C |
Nozzle size | 0.2–1.2 mm |
Bed temperature | max. 70 °C |
Cooling fan | recommended up to 100% |
Layer height | 0.4–0.8 mm |
Print speed | optimal 20–80 mm/s, max. 100 mm/s |
Flow rate | 40–120% |
Technical Data | Kern ABP 100-5DM |
---|---|
Max. weighing capacity [g] | 52 |
Min. weight [g] | 0.001 |
Readability [g] | 0.00001 |
Verification scale interval [g] | 0.001 |
Linearity [g] | ±0.00005 |
Reproducibility [g] | 0.00002 |
ID | Nozzle [°C] | Bed Temperature [°C] | Flow Rate [%] | Weight [g] |
---|---|---|---|---|
P1.1 | 240 | 60 | 100 | 3.65083 |
P1.2 | 220 | 60 | 100 | 3.65097 |
P1.3 | 200 | 60 | 100 | 3.61644 |
P2.1 | 240 | 60 | 90 | 3.29265 |
P2.2 | 220 | 60 | 90 | 3.28735 |
P2.3 | 200 | 60 | 90 | 3.27181 |
P3.1 | 240 | 60 | 80 | 2.94245 |
P3.2 | 220 | 60 | 80 | 2.94134 |
P3.3 | 200 | 60 | 80 | 2.90200 |
P4.1 | 240 | 60 | 70 | 2.56432 |
P4.2 | 220 | 60 | 70 | 2.55836 |
P4.3 | 200 | 60 | 70 | 2.54779 |
P5.1 | 240 | 60 | 60 | 2.19202 |
P5.2 | 220 | 60 | 60 | 2.19054 |
P5.3 | 200 | 60 | 60 | 2.18127 |
P6.1 | 240 | 60 | 50 | 1.83459 |
P6.2 | 220 | 60 | 50 | 1.81506 |
P6.3 | 200 | 60 | 50 | 1.81840 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szívós, B.F.; Nemes, V.; Szalai, S.; Fischer, S. Testing Sustainable 3D-Printed Battery Housings with DIC Technology. Eng. Proc. 2024, 79, 69. https://doi.org/10.3390/engproc2024079069
Szívós BF, Nemes V, Szalai S, Fischer S. Testing Sustainable 3D-Printed Battery Housings with DIC Technology. Engineering Proceedings. 2024; 79(1):69. https://doi.org/10.3390/engproc2024079069
Chicago/Turabian StyleSzívós, Brigitta Fruzsina, Vivien Nemes, Szabolcs Szalai, and Szabolcs Fischer. 2024. "Testing Sustainable 3D-Printed Battery Housings with DIC Technology" Engineering Proceedings 79, no. 1: 69. https://doi.org/10.3390/engproc2024079069
APA StyleSzívós, B. F., Nemes, V., Szalai, S., & Fischer, S. (2024). Testing Sustainable 3D-Printed Battery Housings with DIC Technology. Engineering Proceedings, 79(1), 69. https://doi.org/10.3390/engproc2024079069