An Electrochemical Sensing Platform Based on a Carbon Paste Electrode Modified with a Graphene Oxide/TiO2 Nanocomposite for Atenolol Determination †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Section
2.1.1. Reagents and Chemicals
2.1.2. Apparatus
2.2. Synthesis of Carbon-Based Modified Nanocomposite Sensors
2.2.1. Preparation of CPE/TiO2 Sensor
2.2.2. Preparation of CPE/rGO/TiO2 Sensor
- Preparation of rGO/TiO2 Composite: In total, 1.00 g of graphene oxide, 0.143 g of TiO2, and 15 mL of distilled water were mixed to create the composite. After the paste was mixed, it remained in an ultrasonic bath for 4 h and was then centrifuged at 5000 RPM.
- CPE/rGO/TiO2: The composite electrode material was synthesized by mixing 1.00 g of carbon powder with particle sizes ranging from 70 to 90 μm, 0.100 g of reduced graphene oxide (rGO) decorated with titanium dioxide (TiO2), and 300 µL of paraffin. The mixture was thoroughly mixed for 30 min to obtain a uniform paste. First, the graphite powder and paraffin were mixed, and then the rGO/TiO2 mixture modifier was added and mixed again with a mortar and pestle until a consistent paste was formed. The resulting paste was filled into a plastic syringe with an internal diameter of 8 mm and an exterior diameter of 9.5 mm. The syringe also contained a copper wire as the external electric contact.
3. Results and Discussion
3.1. Electrochemical Characterization of Nanocomposite Sensors
3.2. Electrochemical Behavior of ATN
3.3. Study of pH and Supporting Electrolyte
3.4. Optimization of Experimental Parameters and Analytical Curves
3.5. Analytical Performance of Nanocomposite Sensors for ATN Determination
3.6. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajendra, N.G.; Vinod, K.G.; Munetaka, O.; Neeta, B. Differential pulse voltammetric determination of atenolol in pharmaceutical formulations and urine using nanogold-modified indium tin oxide electrode. Electrochem. Commun. 2006, 8, 65–70. [Google Scholar]
- Broli, N.; Vasjari, M.; Vallja, L.; Shehu, A.; Duka, S.; Cenolli, S. A carbon paste sensor modified with banana tissue for determination of atenolol in pharmaceutical tablets. J. Hyg. Eng. Des. 2022, 149–154. Available online: https://keypublishing.org/jhed/wp-content/uploads/2022/04/03.-Full-paper-Nevila-Broli.pdf (accessed on 14 July 2024).
- Broli, N.; Vasjari, M.; Vallja, L.; Duka, S.; Shehu, A.; Cenolli, S. Electrochemical determination of atenolol and propranolol using a carbon paste sensor modified with natural ilmenite. Open Chem. 2021, 19, 875–883. [Google Scholar] [CrossRef]
- Nimisha, J.; Rajeev, J.; Swati, S.; Kshiti, S. Recent trends in electrochemical sensors for multianalyte detection—A review. Talanta 2016, 161, 894–916. [Google Scholar]
- Radi, A.; Wassel, A.A.; El Ries, M.A. Adsorptive behavior and voltammetric analysis of propranolol at carbon paste electrode. Chem. Anal. 2004, 49, 51–58. [Google Scholar]
- Sartori, E.R.; Medeiros, R.A.; Rocha-Filho, R.C.; Fatibello-Filho, O. Square-wave voltammetric determination of propranolol and atenolol in pharmaceuticals using a boron-doped diamond electrode. Talanta 2010, 81, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Nurdina, M.; Prabowoa, O.A.; Arhamb, Z.; Wibowoc, D.; Maulidiyaha, M.; Saadd, S.K.M.; Umar, A.A. Highly sensitive fipronil pesticide detection on ilmenite (FeO·TiO2)-carbon paste composite electrode. Surf. Interfaces 2019, 16, 108–113. [Google Scholar] [CrossRef]
- Uslu, B.; Ozkan, S.A. Electroanalytical methods for the determi- nation of pharmaceuticals: A review of recent trends and developments. Anal. Lett. 2011, 44, 2644–2702. [Google Scholar] [CrossRef]
- Taylor, K.M.L.; Rieter, W.J.; Lin, W. Manganese-based nanoscale metal−organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 14358–14359. [Google Scholar] [CrossRef] [PubMed]
- Nurdina, M.; Agusub, L.; Putraa, A.A.M.; Maulidiyaha, M.; Arhamc, Z.; Wibowoa, D.; Muzakkar, M.Z.; Umar, A.A. Synthesis and electrochemical performance of graphene-TiO2-carbon paste nanocomposites electrode in phenol detection. J. Phys. Chem. Solids 2019, 131, 104–110. [Google Scholar] [CrossRef]
- Currie, L.A. and Svehla, G. Nomenclature for the presentation of results of chemical analysis. Pure Appl. Chem. 1994, 66, 595–608. [Google Scholar] [CrossRef]
- Swati, S.; Nimisha, J.; Rajeev, J. Development of Electrochemical Sensor for Simultaneous Quantification of Atenolol and Losartan Potassium. Nanosci. Technol. 2018, 5, 1–13. [Google Scholar] [CrossRef]
- Roopa, H. Patil, Rajesh N. Hegde, and Nandibewoor S.T. Voltammetric Oxidation and Determination of Atenolol Using a Carbon Paste Electrode. Ind. Eng. Chem. Res. 2009, 48, 10206–10210. [Google Scholar]
- Tajik, S.; Beitollahi, H.; Mohammadi, S.Z.; Nejad, F.G.; Dourandish, Z. Voltammetric sensor based on a Ni-Co-layered double hydroxide/multi-walled carbon nanotubes nanocomposite for 4-aminophenol determination. Chem. Phys. Impact 2024, 8, 100653. [Google Scholar] [CrossRef]
- Babaei, A.; Mirzakhani, S.; Khalilzadeh, B. A Sensitive Simultaneous Determination of Epinephrine and Tyrosine using an Iron(III) Doped Zeolite-Modified Carbon Paste Electrode. J. Braz. Chem. Soc. 2009, 20, 1862–1869. [Google Scholar] [CrossRef]
Sensors | Dynamic Range (µM) | Correlation Coefficient R2 | Sensitivity (µA/µM) | LOD (µM) | RSD (%) |
---|---|---|---|---|---|
CPE | 36–587 | 0.998 | 0.3 | 12.72 | 5.0 |
CPE/TiO2 | 1.7–3185 | 0.990 | 1.7 | 0.8 | 1.0 |
CPE/rGO/TiO2 | 6.6–909 | 0.995 | 5.9 | 0.1 | 0.6 |
Sample ATN (mg Tablet) | Label Value | SWV ATN (mg Tablet) | RSD (%) | CV | RSD (%) |
---|---|---|---|---|---|
1 | 100.0 | 107 | 1.3 | 125.0 | 4.2 |
2 | 100.0 | 102.5 | 1.8 | 127.8 | 3.8 |
3 | 100.0 | 84.3 | 2.7 | 121.3 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoxha, E.; Broli, N.; Vasjari, M.; Cenolli, S. An Electrochemical Sensing Platform Based on a Carbon Paste Electrode Modified with a Graphene Oxide/TiO2 Nanocomposite for Atenolol Determination. Eng. Proc. 2024, 73, 1. https://doi.org/10.3390/engproc2024073001
Hoxha E, Broli N, Vasjari M, Cenolli S. An Electrochemical Sensing Platform Based on a Carbon Paste Electrode Modified with a Graphene Oxide/TiO2 Nanocomposite for Atenolol Determination. Engineering Proceedings. 2024; 73(1):1. https://doi.org/10.3390/engproc2024073001
Chicago/Turabian StyleHoxha, Ergi, Nevila Broli, Majlinda Vasjari, and Sadik Cenolli. 2024. "An Electrochemical Sensing Platform Based on a Carbon Paste Electrode Modified with a Graphene Oxide/TiO2 Nanocomposite for Atenolol Determination" Engineering Proceedings 73, no. 1: 1. https://doi.org/10.3390/engproc2024073001
APA StyleHoxha, E., Broli, N., Vasjari, M., & Cenolli, S. (2024). An Electrochemical Sensing Platform Based on a Carbon Paste Electrode Modified with a Graphene Oxide/TiO2 Nanocomposite for Atenolol Determination. Engineering Proceedings, 73(1), 1. https://doi.org/10.3390/engproc2024073001