On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. DWS
2.3. Feature Extraction and Machine Learning Models
3. Results
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birkmeyer, J.D.; Finks, J.F.; O’Reilly, A.; Oerline, M.; Carlin, A.M.; Nunn, A.R.; Dimick, J.; Banerjee, M.; Birkmeyer, N.J.O. Surgical Skill and Complication Rates after Bariatric Surgery. N. Engl. J. Med. 2013, 369, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.L.; Reddy, V.; Longo, W.E.; Gusberg, R.J. Graduating General Surgery Resident Operative Confidence: Perspective from a National Survey. J. Surg. Res. 2014, 190, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Soangra, R.; Sivakumar, R.; Anirudh, E.R.; Reddy Y, S.V.; John, E.B. Evaluation of Surgical Skill Using Machine Learning with Optimal Wearable Sensor Locations. PLoS ONE 2022, 17, e0267936. [Google Scholar] [CrossRef] [PubMed]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.-A. Evaluating Surgical Skills from Kinematic Data Using Convolutional Neural Networks. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2018, Granada, Spain, 16–20 September 2018; Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 214–221. [Google Scholar]
- Yanik, E.; Intes, X.; Kruger, U.; Yan, P.; Diller, D.; Van Voorst, B.; Makled, B.; Norfleet, J.; De, S. Deep Neural Networks for the Assessment of Surgical Skills: A Systematic Review. J. Def. Model. Simul. 2022, 19, 159–171. [Google Scholar] [CrossRef]
- Bissonnette, V.; Mirchi, N.; Ledwos, N.; Alsidieri, G.; Winkler-Schwartz, A.; Del Maestro, R.F.; on behalf of the Neurosurgical Simulation & Artificial Intelligence Learning Centre. Artificial Intelligence Distinguishes Surgical Training Levels in a Virtual Reality Spinal Task. J. Bone Jt. Surg. 2019, 101, e127. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Yu, H.W.; Kwon, H.; Kong, H.-J.; Lee, K.E.; Kim, H.C. Evaluation of Surgical Skills during Robotic Surgery by Deep Learning-Based Multiple Surgical Instrument Tracking in Training and Actual Operations. J. Clin. Med. 2020, 9, 1964. [Google Scholar] [CrossRef] [PubMed]
- Lavanchy, J.L.; Zindel, J.; Kirtac, K.; Twick, I.; Hosgor, E.; Candinas, D.; Beldi, G. Automation of Surgical Skill Assessment Using a Three-Stage Machine Learning Algorithm. Sci. Rep. 2021, 11, 5197. [Google Scholar] [CrossRef] [PubMed]
- Davids, J.; Makariou, S.-G.; Ashrafian, H.; Darzi, A.; Marcus, H.J.; Giannarou, S. Automated Vision-Based Microsurgical Skill Analysis in Neurosurgery Using Deep Learning: Development and Preclinical Validation. World Neurosurg. 2021, 149, e669–e686. [Google Scholar] [CrossRef] [PubMed]
- Nsugbe, E.; Phillips, C.; Fraser, M.; McIntosh, J. Gesture Recognition for Transhumeral Prosthesis Control Using EMG and NIR. IET Cyber-Syst. Robot. 2020, 2, 122–131. [Google Scholar] [CrossRef]
- Nsugbe, E.; Samuel, O.W.; Asogbon, M.G.; Li, G. Phantom Motion Intent Decoding for Transhumeral Prosthesis Control with Fused Neuromuscular and Brain Wave Signals. IET Cyber-Syst. Robot. 2021, 3, 77–88. [Google Scholar] [CrossRef]
- Nsugbe, E.; Connelly, S. Multiscale Depth of Anaesthesia Prediction for Surgery Using Frontal Cortex Electroencephalography. Healthc. Technol. Lett. 2022, 9, 43–53. [Google Scholar] [CrossRef]
- Nsugbe, E. Particle Size Distribution Estimation of a Powder Agglomeration Process Using Acoustic Emissions. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2017. [Google Scholar]
- Nsugbe, E.; Starr, A.; Foote, P.; Ruiz-Carcel, C.; Jennions, I. Size Differentiation of a Continuous Stream of Particles Using Acoustic Emissions. IOP Conf. Ser. Mater. Sci. Eng. 2016, 161, 012090. [Google Scholar] [CrossRef]
- Andén, J.; Mallat, S. Deep Scattering Spectrum. IEEE Trans. Signal Process. 2014, 62, 4114–4128. [Google Scholar] [CrossRef]
- Nsugbe, E.; Williams Samuel, O.; Asogbon, M.G.; Li, G. Contrast of Multi-Resolution Analysis Approach to Transhumeral Phantom Motion Decoding. CAAI Trans. Intell. Technol. 2021, 6, 360–375. [Google Scholar] [CrossRef]
- Nsugbe, E.; Ruiz-Carcel, C.; Starr, A.; Jennions, I. Estimation of Fine and Oversize Particle Ratio in a Heterogeneous Compound with Acoustic Emissions. Sensors 2018, 18, 851. [Google Scholar] [CrossRef] [PubMed]
Model | Raw Signal/Handcrafted Features (%) | DWS (%) |
---|---|---|
DT | 87 | 92 |
LDA | 83 | 86 |
LSVM | 76 | 90 |
QSVM | 90 | 97 |
CSVM | 93 | 99 |
FGSVM | 95 | 92 |
KNN | 95 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nsugbe, E.; Buruno, H.; Connelly, S.; Samuel, O.W.; Obajemu, O. On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians. Eng. Proc. 2023, 58, 116. https://doi.org/10.3390/ecsa-10-16231
Nsugbe E, Buruno H, Connelly S, Samuel OW, Obajemu O. On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians. Engineering Proceedings. 2023; 58(1):116. https://doi.org/10.3390/ecsa-10-16231
Chicago/Turabian StyleNsugbe, Ejay, Halin Buruno, Stephanie Connelly, Oluwarotimi Williams Samuel, and Olusayo Obajemu. 2023. "On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians" Engineering Proceedings 58, no. 1: 116. https://doi.org/10.3390/ecsa-10-16231
APA StyleNsugbe, E., Buruno, H., Connelly, S., Samuel, O. W., & Obajemu, O. (2023). On the Use of Muscle Activation Patterns and Artificial Intelligence Methods for the Assessment of the Surgical Skills of Clinicians. Engineering Proceedings, 58(1), 116. https://doi.org/10.3390/ecsa-10-16231