Some Microbiological Characteristics of the Biofilm on the Surface of Pre-Production Pellets of Polypropylene Microplastics after Short Exposure in Soil †
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duis, K.; Coors, A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 2016, 28, 2. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Chia, R.W.; Lee, J.Y.; Lee, M.; Lee, G.S.; Jeong, C.D. Role of soil microplastic pollution in climate change. Sci. Total. Environ. 2023, 887, 164112. [Google Scholar] [CrossRef] [PubMed]
- Dike, S.; Apte, S. Impact of microplastic pollution in terrestrial ecosystem on index and engineering properties of sandy soil: An experimental investigation. Sci. Total. Environ. 2023, 887, 164049. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, V.O.; Melnikova, O.G.; Ponomaryov, K.S.; Samokhvalova, A.I. Microplastics in bottom sediments of rivers in urbanized areas. In Proceedings of the International Scientific and Practical Internet Conference “Ecologically Sustainable Development of Urban Systems: Challenges and Solutions” KhNUUE named after O. M. Beketova, Kharkiv, Ukraine, 2–3 November 2021; Available online: http://eprints.kname.edu.ua/60576/1/C%D0%B1%D0%BE%D1%80%D0%BD%D0%B8%D0%BA21-134-136.pdf (accessed on 26 June 2023). (In Ukrainian).
- Fortuna, M.; Borysovska, O. Assessment of water pollution by microplastic. Collect. Sci. Work. Natl. Min. Univ. 2021, 65, 195–206. Available online: http://znp.nmu.org.ua/index.php/en/archives/37-65en/441-65en18 (accessed on 26 June 2023). (In Ukrainian). [CrossRef]
- Kublik, S.; Gschwendtner, S.; Magritsch, T.; Radl, V.; Rillig, M.C.; Schloter, M. Microplastics in soil induce a new microbial habitat, with consequences for bulk soil microbiomes. Front. Environ. Sci. 2022, 10, 989267. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Wang, X.; Cheng, T.; Fu, K.; Qin, Z.; Feng, K. Biofilm Structural and Functional Features on Microplastic Surfaces in Greenhouse Agricultural Soil. Sustainability 2022, 14, 7024. [Google Scholar] [CrossRef]
- McCormick, A.; Hoellein, T.J.; Mason, S.A.; Schluep, J.; Kelly, J.J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 2014, 48, 11863–11871. [Google Scholar] [CrossRef] [PubMed]
- Tagg, A.S.; Oberbeckmann, S.; Fischer, D.; Kreikemeyer, B. Paint particles are distinct and variable substrate for marine bacteria. Mar. Pollut. Bull. 2019, 146, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Tkachuk, N.; Zelena, L.; Lukash, O.; Mazur, P. Microbiological and genetic characteristics of Bacillus velezensis bacillibactin-producing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface. EQ 2021, 32, 119–129. [Google Scholar] [CrossRef]
- Tkachuk, N.; Zelena, L. The Impact of Bacteria of the Genus Bacillus upon the Biodamage/Biodegradation of Some Metals and Extensively Used Petroleum-Based Plastics. Corros. Mater. Degrad. 2021, 2, 531–553. [Google Scholar] [CrossRef]
- Yao, Y.; Rao, S.; Habimana, O. Active Microbiome Structure and Functional Analyses of Freshwater Benthic Biofilm Samples Influenced by RNA Extraction Methods. Front. Microbiol. 2021, 12, 588025. [Google Scholar] [CrossRef] [PubMed]
- Yeromina, A.K.; Goncharova, N.G.; Sokolovska, I.A. Ecology of Microorganisms: Teaching. Manual for Students of the 3rd Year of the Medical Faculty, Specialty “Laboratory diagnostics”; ZSMU: Zaporizhzhia, Ukraine, 2013; 75p, Available online: http://library.zsmu.edu.ua/cgi/irbis64r_14/fulltext/Rejting/Er'ominaAK13_Ekolo_m.pdf (accessed on 26 June 2023). (In Ukrainian)
- Furzikova, T.M.; Serhiychuk, M.G.; Vlasenko, V.V.; Shvets, Y.u.V.; Pozur, V.K. Microbiology. Practicum; Phytosocial Center: Kyiv, Ukraine, 2006; 210p. (In Ukrainian) [Google Scholar]
- Tkachuk, N.; Zelena, L. Bacterial sulfidogenic community from the surface of technogenic materials in vitro: Composition and biofilm formation. Biofouling 2023, 39, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Abdulina, D.R.; Asaulenko, L.G.; Purish, L.M. Diversity of corrosive aggressive bacteria in soils of different biotopes. Stud. Biol. 2011, 5, 11–16. [Google Scholar] [CrossRef][Green Version]
- Rogers, J.; Dowsett, A.B.; Dennis, P.J.; Lee, J.V.; Keevil, C.W. Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. Appl. Environ. Microbiol. 1994, 60, 1842–1851. [Google Scholar] [CrossRef]
- Parrish, K.; Fahrenfeld, N.L. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environ. Sci. Water Res. Technol. 2019, 5, 495–505. [Google Scholar] [CrossRef]
- Harrison, J.P.; Schratzberger, M.; Sapp, M.; Osborn, A.M. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 2014, 14, 232. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Result | Limit Permissible Concentration |
---|---|---|
Nitrate nitrogen | <4.0 mg/kg | 130.0 mg/kg |
Ammonium nitrogen | <1.0 mg/kg | Not normalized |
pH | 7.05 units pH | Not normalized |
Sulfates | 9.4 mg/kg | Not normalized |
Chlorides | 500.0 mmol/100 g | Not normalized |
Sulfur | <2.0 mg/kg | 160.0 mg/kg |
Humidity | 4.3% | Not normalized |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkachuk, N.; Zelena, L. Some Microbiological Characteristics of the Biofilm on the Surface of Pre-Production Pellets of Polypropylene Microplastics after Short Exposure in Soil. Eng. Proc. 2023, 56, 13. https://doi.org/10.3390/ASEC2023-15350
Tkachuk N, Zelena L. Some Microbiological Characteristics of the Biofilm on the Surface of Pre-Production Pellets of Polypropylene Microplastics after Short Exposure in Soil. Engineering Proceedings. 2023; 56(1):13. https://doi.org/10.3390/ASEC2023-15350
Chicago/Turabian StyleTkachuk, Nataliia, and Liubov Zelena. 2023. "Some Microbiological Characteristics of the Biofilm on the Surface of Pre-Production Pellets of Polypropylene Microplastics after Short Exposure in Soil" Engineering Proceedings 56, no. 1: 13. https://doi.org/10.3390/ASEC2023-15350
APA StyleTkachuk, N., & Zelena, L. (2023). Some Microbiological Characteristics of the Biofilm on the Surface of Pre-Production Pellets of Polypropylene Microplastics after Short Exposure in Soil. Engineering Proceedings, 56(1), 13. https://doi.org/10.3390/ASEC2023-15350