Bernoulli Time Series Modelling with Application to Accommodation Tourism Demand †
Abstract
:1. Introduction
1.1. Literature Review
2. Methods
2.1. Bernoulli Time Series Modeling
2.2. Log-Log Modeling BeTSUF: Estimated by Generalized Method Moments HAC-Newey-West (GMM + HAC-Newey-West)
2.3. Accuracy of the Predictive Capacity of the Models
3. A Case Study in the Social Sciences: The Dichotomy of Choice between Hotels and Tourist Apartments
3.1. Data and Correlations
3.2. Empirical Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maasoumi, E.; Medeiros, M.C. The link between statistical learning theory and econometrics: Applications in economics, finance, and marketing. Econ. Rev. 2010, 29, 470–475. [Google Scholar] [CrossRef]
- Shoja, M.; Soofi, E.S. Uncertainty, information, and disagreement of economic forecasters. Econ. Rev. 2017, 36, 796–817. [Google Scholar] [CrossRef]
- Maasoumi, E. A compendium to information theory in economics and econometrics. Econ. Rev. 1993, 12, 137–181. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, E.L.; Casella, G. Theory of Point Estimation, 2nd ed.; Springer: Berlin, Germany, 1998. [Google Scholar]
- Harvey, A. Chapter 7 forecasting with unobserved components time series models. Handb. Econ. Forecast. 2006. [Google Scholar] [CrossRef]
- Ruiz-Reina, M.Á. Entropy of tourism: The unseen side of tourism accommodation. In Proceedings of the International Conference on Applied Research in Business, Management and Economics, Barcelona, Spain, 12–14 December 2019. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Ruiz-Reina, M.Á. Big data: Does it really improve forecasting techniques for tourism demand in spain? In International Conference on Time Series and Forecasting; Godel Impresiones Digitales S.L.: Granada, Spain, 2019; pp. 694–706. [Google Scholar]
- Li, G.; Song, H.; Witt, S.F. Recent developments in econometric modeling and forecasting. J. Travel Res. 2005. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Li, G. Tourism demand modelling and forecasting-A review of recent research. Tour. Manag. 2008, 29, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.; Song, H.; Crouch, G.I. A meta-analysis of international tourism demand forecasting and implications for practice. Tour. Manag. 2014. [Google Scholar] [CrossRef]
- Jiao, E.X.; Chen, J.L. Tourism forecasting: A review of methodological developments over the last decade. Tour. Econ. 2019. [Google Scholar] [CrossRef]
- Wu, D.C.; Song, H.; Shen, S. New developments in tourism and hotel demand modeling and forecasting. Int. J. Contemp. Hosp. Manag. 2017, 29, 507–529. [Google Scholar] [CrossRef]
- Mariani, M.; Baggio, R.; Fuchs, M.; Höepken, W. Business intelligence and big data in hospitality and tourism: A systematic literature review. Int. J. Contemp. Hosp. Manag. 2018. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xu, L.; Tang, L.; Wang, S.; Li, L. Big data in tourism research: A literature review. Tour. Manag. 2018, 68, 301–323. [Google Scholar] [CrossRef]
- Zeger, S.L.; Qaqish, B. Markov regression models for time series: A quasi-likelihood approach. Biometrics 1988, 44, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Peduzzi, P.; Holford, T.; Detre, K.; Chan, Y.K. Comparison of the logistic and Cox regression models when outcome is determined in all patients after a fixed period of time. J. Chronic Dis. 1987, 40, 761–767. [Google Scholar] [CrossRef]
- Hung, Y.; Zarnitsyna, V.; Zhang, Y.; Zhu, C.; Wu, C.F.J. Binary time series modeling with application to adhesion frequency experiments. J. Am. Stat. Assoc. 2008, 103, 1248–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakker, M.; Twining-Ward, L. Tourism and the Sharing Economy: Policy and Potential of Sustainable Peer-to-Peer Accommodation; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Portolan, A. The impacts of private accomodation attributes on tourism demand. In DIEM: Dubrovnik International Economic Meeting; Sveučilište u Dubrovniku: Dubrovnik, Croatia, 2013. [Google Scholar]
- Juaneda, C.; Raya, J.M.; Sastre, F. Pricing the time and location of a stay at a hotel or apartment. Tour. Econ. 2011, 17, 321–338. [Google Scholar] [CrossRef]
- Ert, E.; Fleischer, A.; Magen, N. Trust and reputation in the sharing economy: The role of personal photos in Airbnb. Tour. Manag. 2016, 62–73. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 27. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Reina, M.Á. Entropy of Tourism: The Unseen Side of Tourism Accommodation. Available online: https://www.dpublication.com/wp-content/uploads/2019/12/424.pdf (accessed on 22 June 2021).
- Hayashi, F. Econometrics; Princeton University Press: Princeton, NJ, USA, 2000. [Google Scholar]
- Chow, G. Econometrics; McGraw-Hill Book Company: New York, NY, USA, 1983. [Google Scholar]
- Sargan, J.D. The estimation of relationships with autocorrelated residuals by the use of instrumental variables. J. R. Stat. Soc. Ser. B 1959, 21, 91–105. [Google Scholar] [CrossRef]
- Hall, A.R. Advanced Texts in Econometrics: Generalized Method of Moments; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Christ, C.F.; Theil, H. Economic forecasts and policy. Econometrica 1962. [Google Scholar] [CrossRef]
- Gill, P.E.; Murray, W.; Saunders, M.A.; Tomlin, J.A.; Wright, M.H.; George, B. Dantzig and systems optimization. Discret. Optim. 2008, 151–158. [Google Scholar] [CrossRef] [Green Version]
Mean | 22,934,393 | 5,891,936 | 0.163905 |
Median | 21,721.214 | 4,858,973 | 0.162965 |
Maximum | 46,657,187 | 12,520,497 | 0.221206 |
Minimum | 9,797,644 | 3,302,242 | 0.118740 |
Std. Dev. | 9,463,750 | 2,433,807 | 0.023312 |
Skewness | 0.565925 | 1,234,384 | 0.312166 |
Kurtosis | 2.330 | 3.408 | 2.441 |
Observations | 216 | 216 | 216 |
1.00 (----) | ||||||
0.15 (0.03) | 1.00 (----) | |||||
0.74 (0.00) | −0.24 (0.00) | 1.00 (----) | ||||
0.94 (0.00) | 0.03 (0.61) | 0.84 (0.00) | 1.00 (----) | |||
0.38 (0.00) | −0.39 (0.00) | 0.49 (0.00) | 0.33 (0.00) | 1.00 (----) | ||
0.66 (0.00) | −0.13 (0.06) | 0.53 (0.00) | 0.56 (0.00) | 0.84 (0.00) | 1.00 (----) |
78,507.36 | 107,581 | 1,524,295 | 1,528,357 |
1 | 1.3696 | 19.0210 | 19.0699 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz Reina, M.Á. Bernoulli Time Series Modelling with Application to Accommodation Tourism Demand. Eng. Proc. 2021, 5, 17. https://doi.org/10.3390/engproc2021005017
Ruiz Reina MÁ. Bernoulli Time Series Modelling with Application to Accommodation Tourism Demand. Engineering Proceedings. 2021; 5(1):17. https://doi.org/10.3390/engproc2021005017
Chicago/Turabian StyleRuiz Reina, Miguel Ángel. 2021. "Bernoulli Time Series Modelling with Application to Accommodation Tourism Demand" Engineering Proceedings 5, no. 1: 17. https://doi.org/10.3390/engproc2021005017
APA StyleRuiz Reina, M. Á. (2021). Bernoulli Time Series Modelling with Application to Accommodation Tourism Demand. Engineering Proceedings, 5(1), 17. https://doi.org/10.3390/engproc2021005017