Air Quality Monitoring in a Near-City Industrial Zone by Low-Cost Sensor Technologies: A Case Study †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kheirbek, I.; Wheeler, K.; Walters, S.; Kass, D.; Matte, T. PM2.5 and ozone health impacts and disparities in New York City: Sensitivity to spatial and temporal resolution. Air Qual. Atmos. Health 2013, 6, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Makri, A.; Stilianakis, N.I. Vulnerability to air pollution health effects. Int. J. Hyg. Environ. Health 2018, 211, 326–336. [Google Scholar] [CrossRef]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef]
- Suriano, D.; Cassano, G.; Penza, M. Design and Development of a Flexible, Plug-and-Play, Cost-Effective Tool for on-Field Evaluation of Gas Sensors. J. Sens. 2020, 2020, 8812025. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; DiSabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Suriano, D.; Penza, M. Assessment of the Performance of a Low-Cost Air Quality Monitor in an Indoor Environment through Different Calibration Models. Atmosphere 2022, 13, 567. [Google Scholar] [CrossRef]
- Suriano, D.; Rossi, R.; Alvisi, M.; Cassano, G.; Pfister, V.; Penza, M.; Trizio, L.; Brattoli, M.; Amodio, M.; De Gennaro, G.A. Portable Sensor System for Air Pollution Monitoring and Malodours Olfactometric Control. In Sensors and Microsystems: AISEM 2011 Proceedings; Lecture Notes in Electrical Engineering; Springer: Boston, MA, USA, 2012; Volume 109. [Google Scholar]
- Guidi, V.; Carotta, M.C.; Fabbri, B.; Gherardi, S.; Giberti, A.; Malagù, C. Array of sensors for detection of gaseous malodors in organic decomposition products. Sens. Actuators B Chem. 2012, 174, 349–354. [Google Scholar] [CrossRef]
- Lewis, A.; Edwards, P. Validate personal air-pollution sensors. Nature 2016, 535, 29–31. [Google Scholar] [CrossRef]
- Kang, Y.; Aye, L.; Ngo, T.D.; Zhou, J. Performance evaluation of low-cost air quality sensors: A review. Sci. Total Environ. 2022, 818, 151769. [Google Scholar] [CrossRef]
- Trizio, L.; Brattoli, M.; DeGennaro, G.; Suriano, D.; Rossi, R.; Alvisi, M.; Cassano, G.; Pfister, V.; Penza, M. Application of artificial neural networks to a gas sensor-array database for environmental monitoring. In Sensors and Microsystems; Springer: Boston, MA, USA, 2012; pp. 139–144. [Google Scholar]
- Bigi, A.; Mueller, M.; Grange, S.K.; Ghermandi, G.; Hueglin, C. Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application. Atmos. Meas. Technol. 2018, 11, 3717–3735. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- Yamamoto, K.; Togami, T.; Yamaguchi, N.; Ninomiya, S. Machine Learning-Based Calibration of Low-Cost Air TemperatureSensors Using Environmental Data. Sensors 2017, 17, 1290. [Google Scholar] [CrossRef] [PubMed]
- Si, M.; Xiong, Y.; Du, S.; Du, K. Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods. Atmos. Meas. Technol. 2020, 13, 1693–1707. [Google Scholar] [CrossRef]
- Cordero, J.M.; Borge, R.; Narros, A. Using statistical methods to carry out infield calibrations of low cost air quality sensors. Sens. Actuators B Chem. 2018, 267, 245–254. [Google Scholar] [CrossRef]
- Kosmopoulos, G.; Salamalikis, V.; Pandis, S.N.; Yannopoulos, P.; Bloutsos, A.A.; Kazantzidis, A. Low-cost sensors for measuring airborne particulate matter: Field evaluation and calibration at a South-Eastern European site. Sci. Total Environ. 2020, 748, 141396. [Google Scholar] [CrossRef]
- NO2-B43F Sensor Datasheet. Available online: https://www.alphasense.com/wp-content/uploads/2022/09/Alphasense_NO2-B43F_datasheet.pdf (accessed on 26 June 2023).
- PMS5003 Sensor Datasheet. Available online: https://www.plantower.com/en/products_33/74.html (accessed on 26 June 2023).
- Suriano, D. A portable air quality monitoring unit and a modular, flexible tool for on-field evaluation and calibration of low-cost gas sensors. HardwareX 2021, 9, e00198. [Google Scholar] [CrossRef] [PubMed]
- Suriano, D. SentinAir system software: A flexible tool for data acquisition from heterogeneous sensors and devices. SoftwareX 2020, 12, 100589. [Google Scholar] [CrossRef]
- Model 405nm Monitor. Available online: https://twobtech.com/model-405-nm-nox-monitor.html (accessed on 26 June 2023).
- APM-2 Monitor. Available online: https://www.comde-derenda.com/produkte/apm-2-2 (accessed on 26 June 2023).
- Python Website. Available online: https://www.python.org (accessed on 26 June 2023).
- Scikit Website. Available online: https://scikit-learn.org/stable/index.html (accessed on 26 June 2023).
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, arXiv:1309.0238. Available online: https://arxiv.org/abs/1309.0238v1 (accessed on 26 June 2023).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learningin Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Rumelhart, D.E.; McClelland, J.L.; PDP ResearchGroup (Eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition; MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sens. Actuators B Chem. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press Inc.: New York, NY, USA, 1995. [Google Scholar]
- Suriano, D.; Prato, M. An Investigation on the Possible Application Areas of Low-Cost PM Sensors for Air Quality Monitoring. Sensors 2023, 23, 3976. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kang, J.; Kim, S.; Im, Y.; Yoo, S.; Lee, D. Long Term Evaluation and Calibration of Low-Cost Particulate Matter (PM) Sensor. Sensors 2020, 20, 3617. [Google Scholar] [CrossRef] [PubMed]
Calibration Period | Validation Period | |||||
---|---|---|---|---|---|---|
Min | Max | Median | Min | Max | Median | |
NO2 [ppb] | 3.3 | 20.6 | 10.4 | 2.8 | 20.9 | 6.3 |
T [°C] | 12 | 26 | 20 | 13 | 26 | 17 |
RH[%] | 32 | 78 | 49 | 43 | 88 | 73 |
Calibration Period | Validation Period | |||||
---|---|---|---|---|---|---|
R2 | MAE [ppb] | RMSE [ppb] | R2 | MAE [ppb] | RMSE [ppb] | |
NO2B43F(1) | 0.818 | 1.4 | 2.0 | 0.439 | 3.4 | 3.6 |
NO2B43F(2) | 0.727 | 1.9 | 2.4 | 0.005 | 3.8 | 5.9 |
Calibration Period | Validation Period | |||||
---|---|---|---|---|---|---|
Min | Max | Median | Min | Max | Median | |
PM2.5 [µg/m3] | 4.2 | 29.3 | 10.0 | 0.3 | 43.8 | 8.0 |
PM10 [µg/m3] | 10.2 | 54.8 | 24.8 | 4.6 | 94.9 | 20 |
T [°C] | 17 | 34 | 24 | 20 | 38 | 26 |
RH[%] | 28 | 80 | 62 | 26 | 88 | 59 |
R2 | MAE [µg/m3] | RMSE [µg/m3] | ||
---|---|---|---|---|
PMS5003(1) | PM10 | 0.411 | 7.9 | 9.6 |
PMS5003(2) | 0.391 | 7.5 | 10.0 | |
PMS5003(3) | 0.359 | 8.3 | 10.8 | |
PMS5003(1) | PM2.5 | 0.859 | 9.9 | 11.3 |
PMS5003(2) | 0.854 | 12.5 | 14.0 | |
PMS5003(3) | 0.835 | 14.2 | 15.8 |
Calibration Period | Validation Period | ||||||
---|---|---|---|---|---|---|---|
R2 | MAE [µg/m3] | RMSE [µg/m3] | R2 | MAE [µg/m3] | RMSE [µg/m3] | ||
PMS5003(1) | PM10 | 0.567 | 4.9 | 6.8 | 0.495 | 5.8 | 7.8 |
PMS5003(2) | 0.541 | 5.1 | 6.9 | 0.481 | 5.9 | 7.9 | |
PMS5003(3) | 0.533 | 5.2 | 7.0 | 0.448 | 6.1 | 8.1 | |
PMS5003(1) | PM2.5 | 0.843 | 1.2 | 1.7 | 0.906 | 0.9 | 1.3 |
PMS5003(2) | 0.834 | 1.2 | 1.7 | 0.907 | 1.0 | 1.3 | |
PMS5003(3) | 0.863 | 1.0 | 1.5 | 0.863 | 1.0 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suriano, D.; Prato, M.; Penza, M. Air Quality Monitoring in a Near-City Industrial Zone by Low-Cost Sensor Technologies: A Case Study. Eng. Proc. 2023, 48, 26. https://doi.org/10.3390/CSAC2023-14910
Suriano D, Prato M, Penza M. Air Quality Monitoring in a Near-City Industrial Zone by Low-Cost Sensor Technologies: A Case Study. Engineering Proceedings. 2023; 48(1):26. https://doi.org/10.3390/CSAC2023-14910
Chicago/Turabian StyleSuriano, Domenico, Mario Prato, and Michele Penza. 2023. "Air Quality Monitoring in a Near-City Industrial Zone by Low-Cost Sensor Technologies: A Case Study" Engineering Proceedings 48, no. 1: 26. https://doi.org/10.3390/CSAC2023-14910
APA StyleSuriano, D., Prato, M., & Penza, M. (2023). Air Quality Monitoring in a Near-City Industrial Zone by Low-Cost Sensor Technologies: A Case Study. Engineering Proceedings, 48(1), 26. https://doi.org/10.3390/CSAC2023-14910