Improving the Accuracy of Firm Failure Forecasting Using Non-Financial Variables: The Case of Croatian SME †
Abstract
1. Introduction
2. Literature Review
3. Research Design
4. Research Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Pervan, I.; Pervan, M.; Kuvek, T. Firm Failure Prediction: Financial Distress Model vs. Traditional Models. Croat. Oper. Res. Rev. 2018, 9, 269–279. Available online: https://hrcak.srce.hr/file/310571 (accessed on 18 December 2022). [CrossRef]
- Beaver, W. Financial ratios as predictor of failure, empirical research in accounting: Selected studies 1966. J. Account. Res. 1967, 4, 71–111. [Google Scholar] [CrossRef]
- Altman, E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Financ. 1968, 23, 589–609. [Google Scholar] [CrossRef]
- Deakin, E.B. A Discriminant Analysis of Predictors of Business Failure. J. Account. Res. 1972, 10, 167–179. [Google Scholar] [CrossRef]
- Taffler, R.J. Forecasting Company Failure in the UK using Discriminat Analysis and Financial Ratio Data. J. R. Soc. 1982, 3, 342–358. [Google Scholar]
- Lukason, O.; Laitinen, E.K. Firm failure processes and components of failure risk: An analysis of European bankrupt firms. J. Bus. Res. 2019, 98, 380–390. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0148296318303126 (accessed on 22 October 2022). [CrossRef]
- Smiti, S.; Soui, M. Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE. Inf. Syst. Front. 2020, 22, 1067–1083. Available online: https://link.springer.com/article/10.1007/s10796-020-10031-6 (accessed on 22 October 2022). [CrossRef]
- Tong, Y.; Serrasqueiro, Z. Predictions of failure and financial distress: A study on Portuguese high and medium-high technology small and mid-sized enterprises. J. Int. Stud. 2021, 14, 9–25. Available online: https://www.proquest.com/docview/2546876504?pq-origsite=gscholar&fromopenview=true (accessed on 5 December 2022). [CrossRef]
- Crespí-Cladera, R.; Martín-Oliver, A.; Pascual-Fuster, B. Financial distress in the hospitality industry during the COVID-19 disaster. Tour. Manag. 2021, 85, 104301. [Google Scholar] [CrossRef]
- Du Jardin, P.; Severin, E. Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model. Decis. Support Syst. 2011, 51, 701–711. [Google Scholar] [CrossRef]
- Edminster, R.O. An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction. J. Financ. Quant. Anal. 1972, 7, 1477–1493. [Google Scholar] [CrossRef]
- Altman, E.I.; Sabato, G. Modeling Credit Risk for SMEs: Evidence from U.S. Market. Abacus 2007, 43, 332–357. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6281.2007.00234.x (accessed on 24 February 2023). [CrossRef]
- Pindado, J.; Rodrigues, L.F. Parsimonious models of financial insolvency in small companies. Small Bus. Econ. 2004, 22, 51–66. [Google Scholar] [CrossRef]
- Lugovskaya, L. Predicting default of Russian SMEs on the basis of financial and non-financial variables. J. Financ. Serv. Mark. 2009, 14, 301–313. [Google Scholar] [CrossRef]
- Cultrera, L.; Bredart, X. Bankruptcy prediction: The case of Belgian SMEs. Rev. Account. Financ. 2016, 15, 101–119. Available online: https://www.emerald.com/insight/content/doi/10.1108/RAF-06-2014-0059/full/html (accessed on 2 May 2022). [CrossRef]
- Susi, V.; Lukason, O. Corporate governance and failure risk: Evidence from Estonian SME population. Manag. Res. Rev. 2019, 42, 703–720. [Google Scholar] [CrossRef]
- Gudmundsson, S.V. Airline distress prediction using non-financial indicators. J. Air Transp. 2002, 7, 4–24. [Google Scholar]
- Grunert, J.; Norden, L.; Weber, M. The role of non-financial factors in internal credit ratings. J. Bank. Financ. 2005, 29, 509–531. [Google Scholar] [CrossRef]
- Altman, E.I.; Sabato, G.; Wilson, N. The Value of Non-Financial Information in SME Risk Management. 2008. Available online: https://ssrn.com/abstract=1320612 (accessed on 18 December 2022).
- Pervan, I.; Kuvek, T. The relative importance of financial ratios and nonfinancial variables in predicting of insolvency. Croat. Oper. Res. Rev. 2013, 13, 187–197. Available online: https://hrcak.srce.hr/97397 (accessed on 18 December 2022).
- Laitinen, E.K. Financial and non-financial variables in prediction failure of small business reorganization. Int. J. Account. Financ. 2013, 4, 1–34. Available online: https://www.inderscienceonline.com/doi/epdf/10.1504/IJAF.2013.053111 (accessed on 4 December 2022). [CrossRef]
- Habachi, M.; Benbachir, S. Combination of linear discriminant analysis and expert opinion for the construction of credit rating models: The case of SMEs. Cogent Bus. Manag. 2019, 6, 1685926. [Google Scholar] [CrossRef]
- Altman, E.I.; Iwanicz-Drozdowska, M.; Laitinen, E.K.; Suvas, A. A Race for Long Horizon Bankruptcy Prediction. Appl. Econ. 2020, 52, 4092–4111. [Google Scholar] [CrossRef]
- Ohlson, J.A. Financial ratios and the probabilistic prediction of bankruptcy. J. Account. Res. 1980, 18, 109–131. [Google Scholar] [CrossRef]
- Prabhakaran, S. Model Selection Approaches. Available online: http://r-statistics.co/Model-Selection-in-R.html (accessed on 3 April 2023).
- UCLA, Factor Variables. R Learning Modules. Available online: https://stats.idre.ucla.edu/r/modules/factor-variables/ (accessed on 3 April 2023).
- Williams, R. Post-Estimation Commands for MLogit. Available online: https://www3.nd.edu/~rwilliam/stats3/Mlogit2.pdf (accessed on 3 April 2023).
SME Category | Number of Observations |
---|---|
Successful | 3046 |
Sensitive | 779 |
Failed | 814 |
Total | 4639 |
Financial Variable | Acronym | Description |
---|---|---|
Return on equity | ROE | Net earnings/Equity |
Return on assets | ROA | Net earnings/Assets |
Operating margin | OM | Operating earnings/Sales |
EBITDA to assets | EBITDAA | EBITDA/Assets |
Sales to equity | SE | Sales/Equity |
Operating cash flow to assets | OCFA | Net operating cash flow/Assets |
Working capital | WC | Working capital/Assets |
Current ratio | CR | Current assets/Current liabilities |
Quick ratio | QR | Current assets-Stock/Current liabilities |
Debt to assets | DA | Total debt/Assets |
Self-financing | SF | Equity/Assets |
Short-term debt to assets | STDA | Short-term debt/Assets |
Debt to EBITDA | DEBITDA | Total debt/EBITDA |
Operating cash flow to debt | OCFD | Net operating cash flow/Total debt |
Non-Financial Variable | Acronym | Description |
---|---|---|
Managerial experience | ME | Three groups (<5 years, 5–10 years, >10 years) |
Business diversification | BD | Three groups (one business, two or more businesses within one industry, businesses in different industries |
Settlement of obligations | SO | Four groups (late payment up to 30 days, late payment from 30 to 60 days, late payment from 60 to 90 days, late payment for more than 90 days) |
Size | S | Ln of assets |
County | C | One of 21 counties in Croatia |
Export | EX | Four groups (export sales 0%, up to 30% export sales, export sales from 30% to 60%, export sales more than 60%) |
Age | A | Three groups (<5 years, 5–10 years, >10 years) |
Variable | Estimate | St. Error | Z Value |
---|---|---|---|
Const. | 0.2150 | 0.2289 | 0.939 |
WC | −2.0607 **** | 0.5271 | −3.909 |
SF | −5.4357 **** | 0.7314 | −7.431 |
OM | −2.8503 *** | 0.8898 | −3.203 |
ROE | −0.3980 | 0.2327 | −1.710 |
Variable | Estimate | St. Error | Z Value |
---|---|---|---|
Const. | 2.1976 | 1.8158 | 1.210 |
WC | −1.8168 ** | 0.8411 | −2.160 |
SF | −4.0941 **** | 0.9895 | −4.138 |
OM | −3.8662 *** | 1.4867 | −2.600 |
S | −0.3061 | 0.2678 | −1.143 |
A 5−10 y | −2.0328 **** | 0.6100 | −3.333 |
A > 10 y | 0.3079 | 0.8719 | 0.353 |
ME 5−10 y | −1.5885 ** | 0.7128 | −2.228 |
ME > 10 y | −1.8246 ** | 0.8042 | −2.269 |
SO 30−60 d | −0.0903 | 1.0309 | −0.088 |
SO 60−90 d | 0.9045 | 0.9897 | 0.917 |
SO > 90 d | 3.7638 **** | 0.6429 | 5.854 |
Year | Model Error (%) | AUROC (%) | ||
---|---|---|---|---|
FV | F&NFV | FV | F&NFV | |
2011 | 7.91 | 5.04 | 89.34 | 97.20 |
2012 | 7.00 | 4.74 | 90.99 | 96.65 |
2013 | 9.27 | 6.36 | 89.20 | 96.61 |
2014 | 11.21 | 7.65 | 86.87 | 95.04 |
2015 | 13.27 | 12.84 | 86.36 | 89.73 |
Chi2 | df | p > Chi2 | |
---|---|---|---|
Successful and sensitive | 2113.08 | 10 | 0.0001 |
Successful and failed firms | 3720.04 | 10 | 0.0001 |
Sensitive and failed firms | 837.44 | 10 | 0.0001 |
Coefficient | St. Error | Z Value | p | |
---|---|---|---|---|
0Y | Base Outcome | |||
1Y | ||||
SF | −0.6096 | 0.2238 | −2.72 | 0.006 |
OCFD | −0.0469 | 0.0412 | −1.14 | 0.254 |
BD-MBI | −0.7155 | 0.2413 | −0.30 | 0.767 |
BD-MBMI | −0.5302 | 0.3135 | −1.69 | 0.091 |
SO 30−60 d | 4.4176 | 0.2054 | 21.51 | 0.000 |
SO 60−90 d | 4.8246 | 0.2226 | 21.67 | 0.000 |
SO > 90 d | 6.5753 | 0.5190 | 12.67 | 0.000 |
EX < 30% | −0.7165 | 0.2003 | −3.58 | 0.000 |
EX 30−60% | −0.8018 | 0.3646 | −2.20 | 0.028 |
EX > 60% | −0.3717 | 0.3107 | −1.20 | 0.232 |
A 5−10 y | −0.6534 | 0.2221 | −2.94 | 0.003 |
A > 10 y | −0.9005 | 0.3541 | −2.54 | 0.011 |
Const | −1.9046 | 0.1574 | −12.10 | 0.000 |
2Y | ||||
SF | −0.6185 | 0.2228 | −2.71 | 0.007 |
OCFD | −0.2855 | 0.0907 | −3.15 | 0.002 |
BD-MBI | −0.8810 | 0.2807 | −3.14 | 0.002 |
BD-MBMI | −1.6507 | 0.4590 | −3.60 | 0.000 |
SO 30−60 d | 3.6686 | 0.5651 | 6.49 | 0.000 |
SO 60−90 d | 6.0407 | 0.3984 | 15.16 | 0.000 |
SO > 90 d | 10.3727 | 0.5884 | 17.63 | 0.000 |
EX < 30% | −1.1166 | 0.3018 | −3.70 | 0.000 |
EX 30−60% | −1.0661 | 0.5791 | −1.84 | 0.066 |
EX > 60% | −0.4927 | 0.5031 | −0.98 | 0.327 |
A 5−10 y | −1.0914 | 0.2620 | −4.17 | 0.000 |
A > 10 y | −0.5193 | 0.4147 | −1.25 | 0.210 |
Const | −3.7462 | 0.3066 | −12.22 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuvek, T.; Pervan, I.; Pervan, M. Improving the Accuracy of Firm Failure Forecasting Using Non-Financial Variables: The Case of Croatian SME. Eng. Proc. 2023, 39, 62. https://doi.org/10.3390/engproc2023039062
Kuvek T, Pervan I, Pervan M. Improving the Accuracy of Firm Failure Forecasting Using Non-Financial Variables: The Case of Croatian SME. Engineering Proceedings. 2023; 39(1):62. https://doi.org/10.3390/engproc2023039062
Chicago/Turabian StyleKuvek, Tamara, Ivica Pervan, and Maja Pervan. 2023. "Improving the Accuracy of Firm Failure Forecasting Using Non-Financial Variables: The Case of Croatian SME" Engineering Proceedings 39, no. 1: 62. https://doi.org/10.3390/engproc2023039062
APA StyleKuvek, T., Pervan, I., & Pervan, M. (2023). Improving the Accuracy of Firm Failure Forecasting Using Non-Financial Variables: The Case of Croatian SME. Engineering Proceedings, 39(1), 62. https://doi.org/10.3390/engproc2023039062