Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” †
Abstract
:1. Introduction
2. Results
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Krevelen, D.W.; Chermin, H.A.G. Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chem. Eng. Sci. 1951, 1, 66–80, Erratum in Chem. Eng. Sci. 1952, 1, 238. [Google Scholar] [CrossRef]
- ICAS23 Software Package Which Includes the Marrero-Gani Method as Well as the Constantinou-Gani Approach and Also Provides Results Based on the Joback and Reid GC Method. Available online: https://www.kt.dtu.dk/english/research/kt-consortium/software (accessed on 21 February 2023).
- Hukkerikar, A.S.; Meier, R.J.; Sin, G.; Gani, R. A method to estimate the enthalpy of formation of organic compounds with chemical accuracy. Fluid Phase Equilibria 2013, 348, 23–32. [Google Scholar] [CrossRef]
- Kadda, A.; Mustapha, B.A.; Yahiaoui, A.; Khaled, T.; Hadji, D. Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method. Int. J. Thermodyn. 2020, 23, 34–41. [Google Scholar] [CrossRef]
- Meier, R.J. Group contribution revisited: The enthalpy of formation of organic compounds with “chemical accuracy”. ChemEngineering 2021, 5, 24. [Google Scholar] [CrossRef]
- Meier, R.J. Group contribution revisited: The enthalpy of formation of organic compounds with “chemical accuracy” Part II. AppliedChem 2021, 1, 111–129. [Google Scholar] [CrossRef]
- Meier, R.J. Group contribution revisited: The enthalpy of formation of organic compounds with “chemical accuracy” Part III. AppliedChem 2022, 2, 213–228. [Google Scholar] [CrossRef]
- Meier, R.J.; Rablen, P.R. Group contribution revisited: The enthalpy of formation of organic compounds with “chemical accuracy” Part IV. Thermo 2023, 3, 289–308. [Google Scholar] [CrossRef]
- Chan, B. High-Level Quantum Chemistry Reference Heats of Formation for a Large Set of C, H, N, and O Species in the NIST Chemistry Webbook and the Identification and Validation of Reliable Protocols for Their Rapid Computation. Phys. Chem. A 2022, 126, 4981–4990. [Google Scholar] [CrossRef] [PubMed]
- NIST Data Base. Available online: https://webbook.nist.gov/ (accessed on 16 March 2023).
- Prosen, E.J.; Rossini, F.D. Heats of combustion and formation of the paraffin hydrocarbons at 25 °C. J. Res. Natl. Bur. Stand. 1945, 34, 263–269. [Google Scholar] [CrossRef]
- Beckhaus, H.-D.; Dogan, B.; Pakusch, J.; Verevkin, S.; Rüchardt, C. Abhangigkeit des inversen anomeren Effektes geminaler Nitril-Gruppen von der Struktur. Chem. Ber. 1990, 123, 2153–2159. [Google Scholar] [CrossRef]
- Verevkin, S.P. Improved Benson Increments for the Estimation of Standard Enthalpies of Formation and Enthalpies of Vaporization of Alkyl Ethers, Acetals, Ketals, and Ortho Esters. J. Chem. Eng. Data 2002, 47, 1071–1097. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Safronov, S.P.; Samarov, A.A.; Vostrikov, S.V. Hydrogen Storage: Thermodynamic Analysis of Alkyl-Quinolines and Alkyl-Pyridines as Potential Liquid Organic Hydrogen Carriers (LOHC). Appl. Sci. 2021, 11, 11758. [Google Scholar] [CrossRef]
- Rablen, P. A Procedure for Computing Hydrocarbon Strain Energies Using Computational Group Equivalents, with Application to 66 Molecules. Chemistry 2020, 2, 22. [Google Scholar] [CrossRef]
Nitriles | NIST | Model dHf | Model-Exp | ABS (Model-Exp) |
---|---|---|---|---|
Propanenitrile | 51.5 | 53.01 | 1.51 | 1.51 |
Butanenitrile | 31.2 | 32.38 | 1.18 | 1.18 |
Pentanenitrile | 11.1 | 11.75 | 0.65 | 0.65 |
Hexanedinitrile | −29.51 | 1.45 | 1.45 | |
Octanenitrile | −50.6 | −50.14 | 0.46 | 0.46 |
Decanenitrile | −91.6 | −91.4 | 0.20 | 0.2 |
Tetradecanenitrile | −174.8 | −173.92 | 0.88 | 0.88 |
Averaged absolute difference | 0.80 | |||
Malononitrile | 266.3 | 211.37 | −54.93 | 54.93 |
Butanedinitrile | 209.7 | 190.74 | −18.96 | 18.96 |
Pentanedinitrile | 170.11 | 0.11 | 0.11 | |
Hexanedinitrile | 149 | 149.48 | 0.48 | 0.48 |
Averaged absolute difference | 0.30 |
Methyl-alkyl-ethers | Verevkin [13] | Model dHf | Model-Exp | ABS (Model-Exp) | Ether Group Constitution | GC Value Ether Group | COC Valence Angle |
---|---|---|---|---|---|---|---|
dimethylether | −184.1 | −184.1 | 0.00 | 0.00 | Me-O-Me | −184.1 | 112.7 |
methyl ethyl ether | −216.4 | −217.36 | −0.96 | 0.96 | Me-O-C-R | −175 | 113.1 |
methyl propyl ether | −238.4 | −237.99 | 0.41 | 0.41 | Me-O-C-R | 113.1 | |
methyl n-butyl ether | −258.3 | −258.62 | −0.32 | 0.32 | Me-O-C-R | 113.1 | |
methyl decyl ether | −381.1 | −382.4 | −1.30 | 1.30 | Me-O-C-R | 113.1 | |
methyl isopropyl ether | −252 | −252.72 | −0.72 | 0.72 | Me-O-CRR′ | −168 | 115.1 |
methyl t-butylether | −283.4 | −282.08 | 1.32 | 1.32 | Me-O-CRR′R″ | −156 | 118.4 |
methyl t-amylether | −301.1 | −302.71 | −1.61 | 1.61 | Me-O-CRR′R″ | 118.7 | |
Averaged absolute difference | 0.83 | ||||||
Di-alkyl ethers | Verevkin [13] | Model dHf | Model-Exp | ABS (Model-Exp) | Ether Group Constitution | GC Value Ether Group | COC Angle |
diethylether | −252.1 | −252.72 | −0.62 | 0.62 | R-COC-R′ | −168 | 113.5 |
ethyl propyl ether | −272.4 | −273.35 | −0.95 | 0.95 | R-COC-R′ | 113.5 | |
ethyl butyl ether | −293.98 | R-COC-R′ | 113.5 | ||||
di-n-propylether | −293.1 | −293.98 | −0.88 | 0.88 | R-COC-R′ | 113.5 | |
di-n-butylether | −332.9 | −335.24 | −2.34 | 2.34 | R-COC-R′ | 113.7 | |
di-n-pentylether | −380.4 | −376.5 | 3.90 | 3.90 | R-COC-R′ | 113.4 | |
ethyl t-amylether | −333.5 | −336.07 | −2.57 | 2.57 | R-COC-R′R″R | −146 | 119.4 |
butyl t-amylether | −375.7 | −377.33 | −1.63 | 1.63 | R-COC-R′R″R‴ | 119.1 | |
ethyl t-butylether | −316.8 | −315.44 | 1.36 | 1.36 | R-COC-R′R″R‴ | 118.8 | |
propyl t-butylether | −339.3 | −336.07 | 3.23 | 3.23 | R-COC-R′R″R‴ | 118.7 | |
n-butyl t-butylether | −360.1 | −356.7 | 3.40 | 3.40 | R-COC-R′R″R‴ | 118.6 | |
amyl t-butylether | −380.6 | −377.33 | 3.27 | 3.27 | R-COC-R′R″R‴ | ||
di-i-propylether | −319.4 | −318.44 | 0.96 | 0.96 | RR′-COC-R″R‴ | −149 | 116 |
di-sec-butylether | −361.3 | −359.7 | 1.60 | 1.60 | RR′-COC-R″R‴ | 116.5 | |
t-butyl s-butylether | −379 | −381.43 | −2.43 | 2.43 | RR′-COC-R″R‴R″″ | −149 | 119.8 |
t-butyl i-propylether | −360.1 | −360.8 | −0.70 | 0.70 | RR′-COC-R″R‴R″″ | 119.9 | |
t-butyl i-butylether | −367.9 | −364.8 | 3.10 | 3.10 | RR′-COC-R″R‴R″″ | 119 | |
di-t-butylether | −361.2 | −361.16 | 0.04 | 0.04 | tBU-COC-tBu | −107 | 128 |
Averaged absolute difference | 1.94 |
Pyridines and Quinolines | Verevkin [14] | Model dHf | Model-Exp | ABS (Model-Exp) |
---|---|---|---|---|
Pyridine | 140.4 | 142 * | 1.60 | 1.60 |
2-methylpyridine | 99.2 | 99.64 | 0.44 | 0.44 |
3-methylpyridine | 106.4 | 105.64 | −0.76 | 0.76 |
4-methylpyridine | 104.1 | 105.64 | 1.54 | 1.54 |
2,3-dimethylpyridine | 68.3 | 63.28 | −5.02 | 5.02 |
2,4-dimethylpyridine | 63.9 | 63.28 | −0.62 | 0.62 |
2,5-dimethylpyridine | 66.5 | 63.28 | −3.22 | 3.22 |
2,6-dimethylpyridine | 58.7 | 57.28 | −1.42 | 1.42 |
3,4-dimethylpyridine | 70.7 | 75.78 | 5.08 | 5.08 |
3,5-dimethylpyridine | 72.8 | 75.78 | 2.98 | 2.98 |
2-ethylpyridine | 75.6 | 79.01 | 3.41 | 3.41 |
3-ethylpyridine | 82.9 | 85.01 | 2.11 | 2.11 |
4-ethylpyridine | 80.6 | 85.01 | 4.41 | 4.41 |
Quinoline | 200.5 | 197 * | −3.50 | 3.50 |
2-methylquinoline | 156.6 | 160.64 | 4.04 | 4.04 |
4-methylquinoline | 158.6 | 160.64 | 2.04 | 2.04 |
6-methylquinoline | 157.3 | 160.64 | 3.34 | 3.34 |
8-methylquinoline | 164.8 | 160.64 | −4.16 | 4.16 |
2,6-dimethylquinoline | 121.3 | 124.28 | 2.98 | 2.98 |
2,7-methylquinoline | 119.8 | 124.28 | 4.48 | 4.48 |
2-phenylquinoline | 286.6 | 287.5 | 0.90 | 0.90 |
Averaged absolute difference | 2.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier, R.J. Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy”. Eng. Proc. 2023, 37, 56. https://doi.org/10.3390/ECP2023-14740
Meier RJ. Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy”. Engineering Proceedings. 2023; 37(1):56. https://doi.org/10.3390/ECP2023-14740
Chicago/Turabian StyleMeier, Robert J. 2023. "Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy”" Engineering Proceedings 37, no. 1: 56. https://doi.org/10.3390/ECP2023-14740