#
Design of Efficient Phase Locked Loop for Low Power Applications^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

## 3. Design and Implementation

#### 3.1. Phase Frequency Detector

#### 3.2. Charge Pump and Low Pass Filter

_{control}. This block also gives a constant voltage to hold the VCO at as the loop locks in at a particular frequency. When the UP signal is high, the positive current I

_{PDI}flows through the circuit and increases the control voltage, When the downstream signal goes high, a negative I

_{PDI}current flows through the circuit, which reduces the control voltage [10]. The output current of the charge pump is given below Equation (1):

#### 3.3. Voltage Controlled Oscillator

#### 3.4. Frequency Divider

## 4. Results and Observations

_{control}= 800 mV.

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Wang, H.; Momeni, O. A charge pump current mismatch compensation design for sub-sampling PLL. IEEE Trans. Circuits Syst. II Express Briefs
**2021**, 68, 1852–1856. [Google Scholar] [CrossRef] - Tsai, T.-H.; Sheen, R.-B.; Chang, C.-H.; Hsieh, K.C.-H.; Staszewski, R.B. A Hybrid-PLL (ADPLL/Charge-Pump PLL) Using Phase Realignment With 0.6-us Settling, 0.619-ps Integrated Jitter, and −240.5-dB FoM in 7-nm FinFET. IEEE Solid-State Circuits Lett.
**2020**, 3, 174–177. [Google Scholar] [CrossRef] - Chae, U.; Park, J.; Kim, J.-G.; Yu, H.-Y.; Cho, I.-J. CMOS voltage-controlled oscillator with high-performance MEMS tunable inductor. Micro Nano Syst. Lett.
**2021**, 9, 13. [Google Scholar] [CrossRef] - Bamigbade, A.; Khadkikar, V.; Hosani, M.A. A Type-3 PLL for Single-Phase Applications. IEEE Trans. Ind. Appl.
**2020**, 56, 5533–5542. [Google Scholar] [CrossRef] - Sánchez-Herrera, R.; Andújar, J.M.; Márquez, M.; Mejías, A.; Gómez-Ruiz, G. Self-Tuning PLL: A New, Easy, Fast and Highly Efficient Phase-Locked Loop Algorithm. IEEE Trans. Energy Convers.
**2022**, 37, 1164–1175. [Google Scholar] [CrossRef] - Patil, P.; Ingale, V. Design of a Low Power PLL in 90 nm CMOS Technology. In Proceedings of the IEEE 5th International Conference for Convergence in Technology, Bombay, India, 29–31 March 2019. [Google Scholar]
- Mazza, G.; Panati, S. A Compact, Low Jitter, CMOS 65 nm 4.8–6 GHz Phase-Locked Loop for Applications in HEP Experiments Front-End Electronics. IEEE Trans. Nucl. Sci.
**2018**, 65, 1212–1217. [Google Scholar] [CrossRef] - Ghasemian, M.S.P.H. A straightforward quadrature signal generator for single-phase SOGI-PLL with low susceptibility to grid harmonics. IEEE Trans. Ind. Electron.
**2021**, 69, 6997–7007. [Google Scholar] - Razavi, B. Jitter-power trade-offs in PLLs. IEEE Trans. Circuits Syst. I Regul. Pap.
**2021**, 68, 1381–1387. [Google Scholar] [CrossRef] - Gong, H.; Wang, X.; Harnefors, L. Rethinking current controller design for PLL-synchronized VSCs in weak grids. IEEE Trans. Power Electron.
**2021**, 37, 1369–1381. [Google Scholar] [CrossRef] - Hoseinizadeh, S.M.; Ouni, S.; Karimi, H. Comparison of PLL-based and PLL-less vector current controllers. IEEE J. Emerg. Sel. Top. Power Electron.
**2021**, 10, 436–445. [Google Scholar] [CrossRef] - Achlerkar, P.D.; Panigrahi, B.K. New perspectives on stability of decoupled double synchronous reference frame PLL. IEEE Trans. Power Electron.
**2021**, 37, 285–302. [Google Scholar] [CrossRef] - Lai, W.-C. Performance Improved Voltage Controlled Oscillator and Double Balanced Mixer Chip Design. In Proceedings of the 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium, Chengdu, China, 28–31 July 2021; pp. 1–3. [Google Scholar]
- Shettar, H.G.; Kotabagi, S.; Shanbhag, N.; Naik, S.; Bagali, R.; Nandavar, S. Frequency Multiplier using Phase-Locked Loop. In Proceedings of the IEEE 17th India Council International Conference (INDICON), New Delhi, India, 10–13 December 2020; pp. 1–5. [Google Scholar]
- Adesina, N.O.; Srivastava, A.; Khan, A.U.; Xu, J. An Ultra-Low Power MOS2 Tunnel Field Effect Transistor PLL Design for IoT Applications. In Proceedings of the Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 21–24 April 2021; pp. 1–6. [Google Scholar]

Parameters | Traditional PLL | Existing PLL | Proposed PLL |
---|---|---|---|

Number of transistors | 112 | 56 | 48 |

V dd | - | 1.8 V | 1.8 V |

Operating frequency | - | 1 GHz | 1 GHz |

Power Consumption | - | 4.2 mW | 194.24 µW |

Total Power Consumed | High | Medium | low |

Technology | 180 nm | 90 nm | 90 nm |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pothina, C.K.; Singh, N.P.; Prasanna, J.L.; Santhosh, C.; Kumar, M.R.
Design of Efficient Phase Locked Loop for Low Power Applications. *Eng. Proc.* **2023**, *34*, 14.
https://doi.org/10.3390/HMAM2-14157

**AMA Style**

Pothina CK, Singh NP, Prasanna JL, Santhosh C, Kumar MR.
Design of Efficient Phase Locked Loop for Low Power Applications. *Engineering Proceedings*. 2023; 34(1):14.
https://doi.org/10.3390/HMAM2-14157

**Chicago/Turabian Style**

Pothina, Chandra Keerthi, Ngangbam Phalguni Singh, Jagupilla Lakshmi Prasanna, Chella Santhosh, and Mokkapati Ravi Kumar.
2023. "Design of Efficient Phase Locked Loop for Low Power Applications" *Engineering Proceedings* 34, no. 1: 14.
https://doi.org/10.3390/HMAM2-14157