
Citation: Pothina, C.K.; Singh, N.P.;

Prasanna, J.L.; Santhosh, C.; Kumar,

M.R. Design of Efficient Phase

Locked Loop for Low Power

Applications. Eng. Proc. 2023, 34, 14.

https://doi.org/10.3390/

HMAM2-14157

Academic Editor: Aravind Rajeswary

Published: 13 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Design of Efficient Phase Locked Loop for Low Power
Applications †

Chandra Keerthi Pothina * , Ngangbam Phalguni Singh * , Jagupilla Lakshmi Prasanna, Chella Santhosh *
and Mokkapati Ravi Kumar

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation,
Guntur 522302, India; lakshmiprasannanewmail@kluniversity.in (J.L.P.); ravikumar@kluniversity.in (M.R.K.)
* Correspondence: ckeerthip7@gmail.com (C.K.P.); npsingh@kluniversity.in (N.P.S.);

csanthosh@kluniversity.in (C.S.)
† Presented at the International Conference on “Holography Meets Advanced Manufacturing”, Online,

20–22 February 2023.

Abstract: The phase-locked loop is a technique that has contributed significantly to technological
advancements in many applications in the fast-evolving digital era. In this paper, a Phase Locked
Loop (PLL) is designed using 90 nm CMOS technology node with 1.8 V supply voltage. It features a
PLL design with minimum power consumption of 194.26 µW with better transient analysis and DC
analysis in an analog-to-digital environment. The proposed PLL design provides the best solution for
many applications where a PLL is required with high performance but has to be accommodated in
less area and low power consumption than state-of-the-art methods. This PLL not only works at high
speed but also makes whole system work at low power in a very effective manner, which suits the
present digital electronics circuits.
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Filter (LPF); Current Starved Voltage-Controlled Oscillator (CSVCO); Analog Digital Environment
(ADE)

1. Introduction

The current era is all about compact battery devices used in electronic devices. A PLL
is used in all SOC devices where circuitry generates a system clock signal. Basically, a PLL
has a feedback loop that controls the phase of the output signal with the input signal along
with phase error.

Figure 1 shows the block diagram of a PLL. It mainly consists of four blocks namely
Phase Frequency Detector (PFD), Charge Pump with Low Pass Filter, a Voltage-Controlled
Oscillator (VCO) to provide oscillations and a Frequency Divider [1].
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2. Methodology

Previously, a multiplier was used as an analog phase detector, but it had a limited
blocking range with a phase error of more than 90◦ where the output voltage is reduced.
A digital phase detector was implemented where the mean value is proportional to the
phase error [2]. The X-OR gate was used as a phase detector, which is linear, but if it were
in phase and the error was greater than 180◦, it would lose its linearity. Consequently, the
phase-frequency detectors are designed to detect phase and frequency differences, which
increases the speed of PLL. For the LPF design, first order filter could be used, but it would
introduce ripples as the control voltage jumps high when current is injected from the charge
pump. To solve this problem, a second-order low-pass filter was designed to suppress the
generated ripple. Firstly, VCOs (Voltage Controlled Oscillators) were designed using LC
oscillators or ring oscillators [3]. However, ring oscillators are not stable as they let the
switching characteristics of logic gates fluctuate by +/−20% and the disadvantage of LC
oscillators has more matrix area. Therefore, the current starved VCOs are realized in our
proposed design.

The PLL works in three states: Free Running state, Capture state, and Phase Lock state.
As the name suggests, the free-running state refers to the phase in which no input voltage
is present. As soon as the input frequency is applied, the VCO starts switching and starts
producing an output frequency to be compared, and this stage is called the capture state [4].

The frequency comparison stops as soon as the output frequency equals the input
frequency. This phase is known as the phase-locked state. PLL is a convenient circuit block
widely used in wireless applications and electronics, from cell phones to radios, televisions,
Wi-Fi routers, areas like FM demodulators, AM demodulators, frequency synthesizers, and
more recovery, etc. [5].

3. Design and Implementation

The proposed design of 90 nm PLL was composed using cadence virtuoso and con-
sisted of all the blocks of a Basic PLL. In this design, the number of transistors is reduced
when compared to the existing designs in [6]. Due to this, the area is reduced. The reduced
transistors also lead to a decreased usage of the power consumption and cost. The design
of blocks of the proposed PLL are shown and discussed below.

3.1. Phase Frequency Detector

The Phase Frequency Detector (PFD) mainly consists of two D-flip flops and NAND
gates. The block diagram of the PFD is shown below in Figure 2. The main purpose of a
PFD is to compare the phase and frequency of the input signal with the feedback signal. It
has two output signals, UP and DOWN [7].

The design of the low power edge triggered D-Flip flop with 1.8 V is designed with a
reduced number of transistors, and the respective output waveforms are shown in Figure 2.
This D flipflop has been used in designing the PFD [8].

Figure 3 shows PFD with two input signals, reference signal CLKREF and the feedback
signal which is the output of VCO, CLKVCO each as an input to the two D-flipflops. Output
of the first D-flipflop enables the positive current source and another the negative current
source of the charge pump. Assuming UP=DOWN=0, when CLKREF is high, UP rises
thereby CLKVCO rises. When DOWN also is high, NAND gate resets both the D-flipflops.
UP and DOWN are high at the same time for a short while, at this point the difference
between their average values gives us the phase or frequency difference between both the
input signals [9].
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3.2. Charge Pump and Low Pass Filter

The charge pump block in Figure 4 converts the output signals of PFD block i.e., UP
and DOWN signals into a voltage that controls the VCO or Vcontrol. This block also gives a
constant voltage to hold the VCO at as the loop locks in at a particular frequency. When
the UP signal is high, the positive current IPDI flows through the circuit and increases the
control voltage, When the downstream signal goes high, a negative IPDI current flows
through the circuit, which reduces the control voltage [10]. The output current of the charge
pump is given below Equation (1):

IPDI = KPDI × ∆∅ (1)

where,

KPDI =
IPUMP

2π
∆∅ = ∅IN − ∅REF
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The control voltage of VCO is given in Equation (2):

VctlVCO = Kf × IPDI (2)

The Low Pass Filter converts the charge pump current into voltage and the frequency
of the VCO depends on the output of the LPF. When the charge pump current is positive,
the oscillation frequency increases, otherwise it decreases [11]. Figure 4 shows the imple-
mentation of Charge Pump along with Low Pass Filter. Low Pass Filter here is important
because it filters out higher frequencies and influences the speed of the circuit [12].

3.3. Voltage Controlled Oscillator

The implementation of a low current VCO circuit that is like a simple ring oscillator
with an PMOS and NMOS transistor is done [13]. This limits the current that passes through
each inverter, and is thus named a low current VCO. The transistors act as current source
sand limit the current to the inverter and the inverter in the next stage is even more starved.
This reduced the frequency due to reducing available current and increasing their time to
charge and recharge [14]. The schematic of CSVCO is shown in Figure 5.
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3.4. Frequency Divider

The output of the VCO is provided to the PFD via the frequency divider circuit. The
frequency of the VCO output signal is divided by two by this frequency divider block [15].
Two D flipflops constructed using 5 NMOS and 5 PMOS transistors are used to implement
the divider circuit, as shown in Figure 6.
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4. Results and Observations

The design of a PLL is done in cadence virtuoso tool by Analog design environment
using 90nm node. Here, the transient and DC analysis of proposed PLL and its blocks are
discussed. A reference signal and a clock feedback signal are given as input to the PFD
with output as UP and DOWN Signals. The output of the charge pump is given to the
VCO, which acts as a Voltage control signal, and the output of VCO is given to a Frequency
Divider where the output frequency is N/2, which is the feedback signal given back to
PFD. Figure 7 shows the entire design of PLL schematic while Figure 8 shows the transient
and DC analysis of the same.
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Here, in Figure 7 the use of a novel design for PFD and a charge pump is used for
reducing the power usage of whole system and it also shows how they are incorporated in
the entire PLL.

Figure 8 shows transient and DC analysis of the proposed PLL that verifies the working
of the PLL in an effective way. This not only shows the output PFD, i.e., UP and DOWN
signals that act according to the clock signal but also show the output waveforms of the
charge pump which varies according to the input signals. When both the input signals i.e.,
REF and FEEDBACK are high, the output of the charge pump is high; when both the input
signals are low, there is a drop at the output signal of the charge pump, which is given as
input to the VCO.

Figure 9 shows the two input signals to Charge Pump, UP and DOWN signals red and
green respectively which are observed to be inverse of each other. The output signal of Charge
Pump is in purple as OUT signal which is given as the input to the VCO as control signal.
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The output waveforms of VCO are shown in Figure 10 with respect to the input control
signal. It shows the frequency of the signal produced by VCO at a constant voltage of
Vcontrol = 800 mV.
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Figure 11 shows input and output of the frequency divider. Visibly, the output pulses
have half the frequency of the input pulses. In other words, the input frequency is divided
by the frequency divider by a factor of 2.
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The DC total power analysis plot of the PLL is shown below Figure 12. The graph
peaks at 194.24 µW which shows the total power consumption of the PLL circuit.

The results of the proposed work are better than the results of conventional state-of-
the-art PLL design in terms of power consumption and the number of transistors used to
design PLL, where power consumption is many times less than that of the conventional
PLL. The comparative analysis of various parameters is presented in Table 1.
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Table 1. Parametric Analysis.

Parameters Traditional PLL Existing PLL Proposed PLL

Number of transistors 112 56 48

V dd - 1.8 V 1.8 V

Operating frequency - 1 GHz 1 GHz

Power Consumption - 4.2 mW 194.24 µW

Total Power
Consumed High Medium low

Technology 180 nm 90 nm 90 nm

Here, the comparative analysis of different parameters is shown. The parameters
such as the number of transistors used in design of PLL, supply voltage, and operating
frequency power consumed are used to implement PLL, and are analyzed above. From
the analysis, the proposed PLL design has a 14% decrease in the number of transistors
with a reduced area and 1000 times less power consumption. So, the proposed PLL can be
effectively used in low power digital electronic applications and compact devices.

5. Conclusions

A design of PLL using a cadence virtuoso tool in an analog design environment by
using GPDK 90nm technology with 1.8 V DC supply is performed. The simulation work
presents a reduced number of transistors with a reduced area in proposed design with very
low power consumed at DC voltage of 1.8 V. The Total Power Consumed by the proposed
PLL design is 194.24micro-Watts. We know that the power consumed, the sizing of the
transistors, and the selection of the power supply voltage at different levels may vary with
the total power consumed, respectively. This not only allows the working of PLL at high
speed, but also supports working at low power, which makes it very effective for low
power applications.
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