Real-Time Hardware Identification of Complex Dynamical Plant by Artificial Neural Network Based on Experimentally Processed Data by Smart Technologies †
Abstract
:1. Introduction
2. Experimental Signals
3. Artificial Neural Networks
3.1. Fully Connected Feedforward Neural Networks
3.2. Recurrent Neural Networks
3.3. Implementation of Neural Network Models in Real-Time Hardware
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitrishkin, Y.V.; Korenev, P.S.; Prokhorov, A.A.; Kartsev, N.M.; Patrov, M.I. Plasma control in tokamaks. Part 1. Controlled thermonuclear fusion problem. Tokamaks. Components of control systems. Adv. Syst. Sci. Appl. 2018, 18, 26–52. [Google Scholar] [CrossRef]
- Mitrishkin, Y.V.; Kartsev, N.M.; Kuznetsov, E.A.; Korostelev, A.Y. Metodi i Sistemi Magnitnogo Upravleniya Plazmoi vs. Tokamakakh [Methods and Systems of Plasma Magnetic Control in Tokamaks]; KRASAND: Moscow, Russia, 2020. (In Russian) [Google Scholar]
- Korenev, P.S.; Mitrishkin, Y.V.; Patrov, M.I. Rekonstruktsiya ravnovesnogo raspredeleniya parametrov plasmi tokamaka po vneshnim magnitnim izmereniyam i postroyeniye lineynikh plazmennikh modeley [Reconstruction of equilibrium distribution of plasma parameters on the base of external magnetic measurements and construction of plasma linear models]. Mechatron. Autom. Control 2016, 17, 254–265. (In Russian) [Google Scholar]
- Mitrishkin Yuri, V.; Korenev Pavel, S.; Konkov Artem, E.; Kruzhkov Valerii, I.; Ovsyannikov Nicolai, E. New Identification Approach and Methods for Plasma Equilibrium Reconstruction in D-Shaped Tokamaks. Mathematics 2022, 10, 40. [Google Scholar] [CrossRef]
- Bishop, C.M.; Haynes, P.S.; Smith, M.E.U.; Todd, T.N.; Trotman, D.L. Real-Time Control of a Tokamak Plasma Using Neural Networks. Neural Comput. 1995, 7, 206–217. [Google Scholar] [CrossRef]
- Coccorese, E.; Morabito, C.; Martone, R. Identification of noncircular plasma equilibria using a neural network approach. Nucl. Fusion 1994, 34, 1349–1363. [Google Scholar] [CrossRef]
- Lister, J.B.; Schnurrenberger, H. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping. Nucl. Fusion 1991, 31, 1291–1300. [Google Scholar] [CrossRef] [Green Version]
- Albanese, R.; Coccorese, E.; Gruber, O.; Martone, R.; McCarthy, P.; Morabito, F.C. Identification of Plasma Equilibria in ITER from Magnetic Measurements Via Functional Parameterization and Neural Networks. Fusion Technol. 1996, 30, 219–236. [Google Scholar] [CrossRef]
- Joung, S.; Kim, J.; Kwak, S.; Bak, J.G.; Lee, S.; Han, H.; Ghim, Y. Deep neural network Grad-Shafranov solver constrained with measured magnetic signals. Nucl. Fusion 2019, 60, 016034. [Google Scholar] [CrossRef] [Green Version]
- Prokhorov, A.; Mitrishkin, Y.; Korenev, P.; Patrov, M. The Plasma Shape Control System in the Tokamak with the Neural Network as a Plasma Equilibrium Reconstruction Algorithm; Elsevier Ltd.: London, UK, 2020; pp. 857–862. [Google Scholar] [CrossRef]
- Mitrishkin, Y.V. Plasma magnetic control systems in D-shaped tokamaks and imitation digital computer platform in real time for controlling plasma current and shape. Adv. Syst. Sci. Appl. Int. Inst. Gen. Syst. Stud. 2022, 22, 1–15. [Google Scholar]
- Minaev, V.B.; Gusev, V.K.; Sakharov, N.V.; Varfolomeev, V.I.; Bakharev, N.N.; Belyakov, V.A.; Bondarchuk, E.N.; Brunkov, P.N.; Chernyshev, F.V.; Davydenko, V.I.; et al. Spherical tokamak Globus-M2: Design, integration, construction. Nucl. Fusion 2017, 57, 066047. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef] [Green Version]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. Off. J. Int. Neural Netw. Soc. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning. Genet. Program. Evolvable Mach. 2018, 19, 305–307. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruzhkov, V.I.; Mitrishkin, Y.V.; Pavlova, E.A. Real-Time Hardware Identification of Complex Dynamical Plant by Artificial Neural Network Based on Experimentally Processed Data by Smart Technologies. Eng. Proc. 2023, 33, 17. https://doi.org/10.3390/engproc2023033017
Kruzhkov VI, Mitrishkin YV, Pavlova EA. Real-Time Hardware Identification of Complex Dynamical Plant by Artificial Neural Network Based on Experimentally Processed Data by Smart Technologies. Engineering Proceedings. 2023; 33(1):17. https://doi.org/10.3390/engproc2023033017
Chicago/Turabian StyleKruzhkov, Valerii I., Yuri V. Mitrishkin, and Eugenia A. Pavlova. 2023. "Real-Time Hardware Identification of Complex Dynamical Plant by Artificial Neural Network Based on Experimentally Processed Data by Smart Technologies" Engineering Proceedings 33, no. 1: 17. https://doi.org/10.3390/engproc2023033017