The Machine-Learning-Empowered Gesture Recognition Glove †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the Flexible Strain Sensor
2.3. Characterization
2.4. The Preparation of Data Gloves and Data Acquisition
2.5. The Design of Machine-Learning Algorithm
3. Results and Discussions
3.1. Morphology Characterization
3.2. Piezoresistive Sensing Response
3.3. The Selection of Classification Algorithm and Feature
3.4. The Gesture Recognition Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galván-Ruiz, J.; Travieso-González, C.M.; Tejera-Fettmilch, A.; Pinan-Roescher, A.; Esteban-Hernández, L.; Domínguez-Quintana, L. Perspective and Evolution of Gesture Recognition for Sign Language: A Review. Sensors 2020, 20, 3571. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Zhang, X.; Ye, Z. Attention-based sign language recognition network utilizing keyframe sampling and skeletal features. IEEE Access 2020, 8, 215592–215602. [Google Scholar] [CrossRef]
- Tsironi, E.; Barros, P.; Weber, C.; Wermter, S. An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition. Neurocomputing 2017, 268, 76–86. [Google Scholar] [CrossRef]
- Saggio, G.; Cavrini, F.; Pinto, C.A. Recognition of arm-and-hand visual signals by means of SVM to increase aircraft security. Stud. Comput. Intell. 2017, 669, 444–461. [Google Scholar]
- Xue, Q.; Li, X.; Wang, D.; Zhang, W. Deep forest-based monocular visual sign language recognition. Appl. Sci. 2019, 9, 1945. [Google Scholar] [CrossRef] [Green Version]
- Weichert, F.; Bachmann, D.; Rudak, B.; Fisseler, D. Analysis of the Accuracy and Robustness of the Leap Motion Controller. Sensors 2013, 13, 6380–6393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameen, S.; Vadera, S. A convolutional neural network to classify American Sign Language fingerspelling from depth and colour images. Expert Syst. 2017, 34, e12197. [Google Scholar] [CrossRef] [Green Version]
- Shukor, A.Z.; Miskon, M.F.; Jamaluddin, M.H.; bin Ali, F.; Asyraf, M.F.; bin Bahar, M.B. A new data glove approach for Malaysian sign language detection. Procedia Comput. Sci. 2015, 76, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.G.; Lee, S.M. Smart wearable hand device for sign language interpretation system with sensors fusion. IEEE Sens. J. 2018, 18, 1224–1232. [Google Scholar] [CrossRef]
- Abhishe, K.S.; Qubeley, L.C.F.; Ho, D. Glove-based hand gesture recognition sign language translator using capacitive touch sensor. In Proceedings of the 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, 3–5 August 2016; pp. 334–337. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, K.; Li, X.; Zhang, S.; Wu, Y.; Zhou, Y.; Meng, K.; Sun, C.; He, Q.; Fan, W.; et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578. [Google Scholar] [CrossRef]
- Wu, J.; Sun, L.; Jafari, R. A wearable system for recognizing American sign language in real-time using IMU and surface EMG sensors. IEEE J. Biomed. Health Inform. 2016, 20, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Acosta, M.; Ortega-Cisneros, S.; Rivera, J.; Sandoval-Ibarra, F. American sign language alphabet recognition using a neuromorphic sensor and an artifcial neural network. Sensors 2017, 17, 2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.D.; Feng, K.Y.; Lu, W.C.; Chou, K.C. Using LogitBoost classifier to predict protein structural classes. J. Theor. Biol. 2006, 238, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.Y.F.; Ling, B.W.K.; Deng, D.X.; Liu, Y. Tachycardias Classification via the Generalized Mean Frequency and Generalized Frequency Variance of Electrocardiograms. Circuits Syst. Signal Process. 2022, 41, 1207–1222. [Google Scholar] [CrossRef]
The First Stage | The Second Stage | ||
---|---|---|---|
Features | Importance Weight | Features | Importance Weight |
waveform factor | 0.8679 | skewness | 0.5681 |
skewness | 0.1321 | kurtosis | 0.4319 |
other features | other features |
Index | Static Signals | Dynamic Signals |
---|---|---|
True Positive Rate | 99.3% | 94.0% |
False Positive Rate | 0.7% | 6.0% |
Positive Predictive Value | 98.7% | 96.9% |
False Discovery Rate | 1.3% | 3.1% |
Index | Bend Fingers | Straighten Fingers |
---|---|---|
True Positive Rate | 95.0% | 95.0% |
False Positive Rate | 5.0% | 5.0% |
Positive Predictive Value | 96.6% | 92.7% |
False Discovery Rate | 3.4% | 7.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Qian, Y.; Gao, Z.; Zhang, L.; Zhuang, Q.; Zhang, K. The Machine-Learning-Empowered Gesture Recognition Glove. Eng. Proc. 2023, 30, 19. https://doi.org/10.3390/engproc2023030019
Luo J, Qian Y, Gao Z, Zhang L, Zhuang Q, Zhang K. The Machine-Learning-Empowered Gesture Recognition Glove. Engineering Proceedings. 2023; 30(1):19. https://doi.org/10.3390/engproc2023030019
Chicago/Turabian StyleLuo, Jun, Yuze Qian, Zhenyu Gao, Lei Zhang, Qinliang Zhuang, and Kun Zhang. 2023. "The Machine-Learning-Empowered Gesture Recognition Glove" Engineering Proceedings 30, no. 1: 19. https://doi.org/10.3390/engproc2023030019
APA StyleLuo, J., Qian, Y., Gao, Z., Zhang, L., Zhuang, Q., & Zhang, K. (2023). The Machine-Learning-Empowered Gesture Recognition Glove. Engineering Proceedings, 30(1), 19. https://doi.org/10.3390/engproc2023030019