Low-Cost Cloud-Enabled Wireless Monitoring System for Linear Fresnel Solar Plants †
Abstract
:1. Introduction
2. Linear Fresnel Solar Plants
3. Monitoring System Architecture
3.1. Hardware
3.2. Cloud-Based Monitoring
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Alrikabi, N. Renewable Energy Types. J. Clean Energy Technol. 2014, 2, 61–64. [Google Scholar] [CrossRef]
- Faraz, T. Benefits of Concentrating Solar Power over Solar Photovoltaic for power generation in Bangladesh. In Proceedings of the 2nd Intern. Conference on the Developments in Renewable Energy Technology (ICDRET), Dhaka, Bangladesh, 5–7 January 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5. [Google Scholar]
- Ahmadi, M.H.; Ghazvini, M.; Sadeghzadeh, M.; Alhuyi Nazari, M.; Kumar, R.; Naeimi, A.; Ming, T. Solar power technology for electricity generation: A critical Review. Energy Sci. Eng. 2018, 6, 340–361. [Google Scholar] [CrossRef]
- Mills, D. Advances in solar thermal electricity technology. Sol. Energy 2004, 76, 19–31. [Google Scholar] [CrossRef]
- Joshi, S.; Jadhav, A.; Gavate, N.; Yashwante, M. Wi-Fi Based Parameter Monitoring for Solar Plant. Int. J. Eng. Sci. Comput. 2016, 6, 4085–4087. [Google Scholar]
- Nagalakshmi, R.; Babu, B.K.; Prashanth, D. Design and Development of a Remote Monitoring and Maintenance of Solar Plant Supervisory System. Int. J. Eng. Comput. Sci. 2014, 3, 9382–9385. [Google Scholar]
- Purohit, N.L. Anshika, Data Acquisition of Solar Power Plant Using Scada System. Int. J. Eng. Trends Technol. 2015, 23, 189–194. [Google Scholar] [CrossRef]
- Vignesh, R.; Samydurai, A. Automatic Monitoring and Lifetime Detection of Solar Panels Using Internet of Things. Int. J. Innov. Res. Comput. Commun. Eng. 2017, 5, 7014–7020. [Google Scholar]
- Zahran, M.; Atia, Y.; Alhosseen, A.; El-Sayed, I. Wired and Wireless Remote Control of PV System. WSEAS Trans. Syst. Control 2010, 5, 656–666. [Google Scholar]
- Shukla, S.; Meghana, K.M.; Manjunath, C.R.; Shantosh, N. Comparison of Wireless Network over Wired Network and Its Type. Int. J. Res. Granthaalayah 2017, 5, 14–20. [Google Scholar] [CrossRef]
- Pfahl, A.; Randt, M.; Meier, F.; Zaschke, M.; Geurts, C.P.; Buselmeier, M. A Holistic Approach for Low Cost Heliostat Fields, International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014, Beijing, China. Energy Procedia 2015, 69, 178–187. [Google Scholar] [CrossRef]
- Dieckmann, S.; Dersch, J.; Giuliano, S.; Puppe, M.; Lüpfert, E.; Hennecke, K.; Pitz-Paal, R.; Taylor, M.; Ralon, P. LCOE reduction potential of parabolic trough and solar tower CSP technology until 2025. In Proceedings of the AIP Conference Proceedings, Abu Dhabi, UAE, 11–14 October 2016; Volume 1850, pp. 160004-1–160004-8. [Google Scholar]
- Montenon, F.P.; Giaconia, A.; Fylaktos, N.; Di Bono, S.; Papanicolas, C.N.; Montagnino, F.M. Solar Multi-Generation in The Mediterranean Area, The experience of the STS-MED project. In Proceedings of the 11th ISES EuroSun Conference, La Palma de Mallorca, Spain, 11–14 October 2016. [Google Scholar]
- Katsioulis, V. Design of a Wireless Monitoring System Based on the ZigBee Protocol for Photovoltaic Systems. Ph.D. Thesis, Brunel University, England, UK, 2011. [Google Scholar]
Data | LFR Egypt | LFR Italy |
---|---|---|
Latitude | 30°25′05.5′′ N | 38°06′01.0′′ N |
Longitude | 31°38′07.8′′ E | 13°20′37.3′′ E |
Elevation | 35 m | 50 m |
DNI per year | 1958 kWh.m−2 | 1703 kWh.m−2 |
Aperture area | 299.50 m2 | 483.84 m2 |
Thermal oil | Therminol 66 | Paratherm NF |
Peak power | 115 kW | 190 kW |
Receiver length | 52 m | 84 m |
Working temperature | 140 °C | 270 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meligy, R.; Lopez-Iturri, P.; Astrain, J.J.; Picallo, I.; Klaina, H.; Rady, M.; Paredes, F.; Montagnino, F.; Alejos, A.V.; Falcone, F. Low-Cost Cloud-Enabled Wireless Monitoring System for Linear Fresnel Solar Plants. Eng. Proc. 2020, 2, 6. https://doi.org/10.3390/ecsa-7-08173
Meligy R, Lopez-Iturri P, Astrain JJ, Picallo I, Klaina H, Rady M, Paredes F, Montagnino F, Alejos AV, Falcone F. Low-Cost Cloud-Enabled Wireless Monitoring System for Linear Fresnel Solar Plants. Engineering Proceedings. 2020; 2(1):6. https://doi.org/10.3390/ecsa-7-08173
Chicago/Turabian StyleMeligy, Rowida, Peio Lopez-Iturri, José Javier Astrain, Imanol Picallo, Hicham Klaina, Mohamed Rady, Filippo Paredes, Fabio Montagnino, Ana Vazquez Alejos, and Francisco Falcone. 2020. "Low-Cost Cloud-Enabled Wireless Monitoring System for Linear Fresnel Solar Plants" Engineering Proceedings 2, no. 1: 6. https://doi.org/10.3390/ecsa-7-08173
APA StyleMeligy, R., Lopez-Iturri, P., Astrain, J. J., Picallo, I., Klaina, H., Rady, M., Paredes, F., Montagnino, F., Alejos, A. V., & Falcone, F. (2020). Low-Cost Cloud-Enabled Wireless Monitoring System for Linear Fresnel Solar Plants. Engineering Proceedings, 2(1), 6. https://doi.org/10.3390/ecsa-7-08173