Cancer Biomarker Methylmalonic Acid Detection by Molecularly Imprinted Polyaniline Paper Sensor †
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Synthesis of MMA Imprinted PANI on Paper Substrates
2.3. Fabrication of PANI Paper Sensor
2.4. Measurement of MMA Concentration
2.5. Data Analysis
3. Results and Discussion
3.1. Resistance
3.2. MMA Detection in Aqueous Solution
3.3. MMA Detection in Plasma
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clarke, R.; Sherliker, P.; Hin, H.; Nexo, E.; Hvas, A.M.; Schneede, J.; Birks, J.; Ueland, P.M.; Emmens, K.; Scott, J.M.; et al. Detection of vitamin B12 deficiency in older people by measuring vitamin B12 or the active fraction of vitamin B12, holotranscobalamin. Clin. Chem. 2007, 53, 963–970. [Google Scholar] [CrossRef]
- Hempen, C.; Wanschers, H.; Veer, G.V. A fast liquid chromatographic tandem mass spectrometric method for the simultaneous determination of total homocysteine and methylmalonic acid. Anal. Bioanal. Chem. 2008, 391, 263–270. [Google Scholar] [CrossRef]
- Tecleab, A.G.; Schofield, R.C.; Ramanathan, L.V.; Carlow, D.C. A Simple and Sensitive Method for Quantitative Measurement of Methylmalonic Acid by Turbulent Flow Chromatography and Tandem Mass Spectrometry. J. Chromatogr. Sep. Tech. 2016, 7, 336. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.P.; Ilter, D.; Low, V.; Endress, J.E.; Fernández-García, J.; Rosenzweig, A.; Schild, T.; Broekaert, D.; Ahmed, A.; Planque, M.; et al. Age-induced accumulation of methylmalonic acid promotes tumour progression. Nature 2020, 585, 283–287. (In English) [Google Scholar] [CrossRef] [PubMed]
- Schroder, T.H.; Quay, T.A.W.; Lamers, Y. Methylmalonic Acid Quantified in Dried Blood Spots Provides a Precise, Valid, and Stable Measure of Functional Vitamin B-12 Status in Healthy Women. J. Nutr. 2014, 144, 1658–1663. (In English) [Google Scholar] [CrossRef] [Green Version]
- Obeid, R.; Geisel, J.; Herrmann, W. Comparison of two methods for measuring methylmalonic acid as a marker for vitamin B12 deficiency. Diagnosis 2015, 2, 67–72. (In English) [Google Scholar] [CrossRef]
- Suhito, I.R.; Koo, K.M.; Kim, T.H. Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells. Biomedicines 2020, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.N.; Vij, V.; Kemp, K.C.; Kim, K.S. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS Nano 2016, 10, 46–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkumar, C.; Veerakumar, P.; Chen, S.M.; Thirumalraj, B.; Liu, S.B. Facile and novel synthesis of palladium nanoparticles supported on a carbon aerogel for ultrasensitive electrochemical sensing of biomolecules. Nanoscale 2017, 9, 6486–6496. [Google Scholar] [CrossRef] [PubMed]
- Erturk, G.; Mattiasson, B. Molecular Imprinting Techniques Used for the Preparation of Biosensors. Sensors 2017, 17, 288. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.-C.; Yeh, W.-M.; Tung, T.-S.; Liao, J.-Y. Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization. Anal. Chim. Acta 2005, 542, 90–96. [Google Scholar] [CrossRef]
- BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef]
- Hua, D.; Lin, L.; Mizhi, J.; Shuangmei, Z.; Mingbo, Y.; Qiang, F. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 2014, 39, 627–655. [Google Scholar] [CrossRef]
- Masoudi, F.M.; Leila, G.; Farideh, P.; Abbasali, Z.; Fariba, S. Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chem. 2016, 194, 61–67. [Google Scholar] [CrossRef]
- Yoshimi, Y.; Narimatsu, A.; Nakayama, K.; Sekine, S.; Hattori, K.; Sakai, K. Development of an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer. J. Artif. Organs 2009, 12, 264. [Google Scholar] [CrossRef]
- Chen, Z.; Chi, T.Y.; Dincel, O.; Tong, L.; Kameoka, J. A Low-cost and Enzyme-free Glucose Paper Sensor. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4097–4100. [Google Scholar] [CrossRef]
- Zhong, C.; Yang, B.; Jiang, X.; Li, J. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing. Crit. Rev. Anal. Chem. 2018, 48, 15–32. [Google Scholar] [CrossRef]
- Akshaya, K.B.; Anitha, V.; Nidhin, M.; Sudhakar, Y.N.; Louis, G. Electrochemical sensing of vitamin B12 deficiency marker methylmalonic acid using PdAu-PPy tailored carbon fiber paper electrode. Talanta 2020, 217, 121028. [Google Scholar] [CrossRef]
- Deepa, J.R.; Anirudhan, T.S.; Gowri, S.; Sekhar, V.C. Electrochemical sensing of methylmalonic acid based on molecularly imprinted polymer modified with graphene oxide and gold nanoparticles. Microchem. J. 2020, 159, 105489. [Google Scholar] [CrossRef]
- Chen, Z.; Wright, C.; Dincel, O.; Chi, T.Y.; Kameoka, J. A Low-Cost Paper Glucose Sensor with Molecularly Imprinted Polyaniline Electrode. Sensors 2020, 20, 1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, T.Y.; Chen, Z.; Kameoka, J. Perfluorooctanesulfonic Acid Detection Using Molecularly Imprinted Polyaniline on a Paper Substrate. Sensors 2020, 20, 7301. [Google Scholar] [CrossRef]
- Borysiak, M.D.; Thompson, M.J.; Posner, J.D. Translating diagnostic assays from the laboratory to the clinic: Analytical and clinical metrics for device development and evaluation. Lab Chip 2016, 16, 1293–1313. (In English) [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Chi, T.-Y.; Kameoka, J. Cancer Biomarker Methylmalonic Acid Detection by Molecularly Imprinted Polyaniline Paper Sensor. Eng. Proc. 2022, 16, 1. https://doi.org/10.3390/IECB2022-12250
Chen Z, Chi T-Y, Kameoka J. Cancer Biomarker Methylmalonic Acid Detection by Molecularly Imprinted Polyaniline Paper Sensor. Engineering Proceedings. 2022; 16(1):1. https://doi.org/10.3390/IECB2022-12250
Chicago/Turabian StyleChen, Zheyuan, Ting-Yen Chi, and Jun Kameoka. 2022. "Cancer Biomarker Methylmalonic Acid Detection by Molecularly Imprinted Polyaniline Paper Sensor" Engineering Proceedings 16, no. 1: 1. https://doi.org/10.3390/IECB2022-12250
APA StyleChen, Z., Chi, T.-Y., & Kameoka, J. (2022). Cancer Biomarker Methylmalonic Acid Detection by Molecularly Imprinted Polyaniline Paper Sensor. Engineering Proceedings, 16(1), 1. https://doi.org/10.3390/IECB2022-12250