Bridging Forecasts and Mitigation Through Retrieval-Augmented Time-Series Models for Cybersecurity Incidents †
Abstract
1. Introduction
2. Methods and Materials
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rains, T. Cybersecurity Threats, Malware Trends, and Strategies: Discover Risk Mitigation Strategies for Modern Threats to Your Organization; Packt Publishing Ltd: Birmingham, UK, 2023. [Google Scholar]
- European Union Agency for Cybersecurity (ENISA). ENISA Threat Landscape 2024; Technical Report; ENISA: Chalandri, Greece, 2024.
- Montasari, R.; Carroll, F.; Macdonald, S.; Jahankhani, H.; Hosseinian-Far, A.; Daneshkhah, A. Application of artificial intelligence and machine learning in producing actionable cyber threat intelligence. In Digital Forensic Investigation of Internet of Things (IoT) Devices; Springer: Cham, Switzerland, 2020; pp. 47–64. [Google Scholar]
- SANS Internet Storm Center (ISC)–DShield API. 2024. Available online: https://isc.sans.edu/api/ (accessed on 31 August 2024).
- URLhaus—Sharing Malicious URLs for the Benefit of the Security Community. 2024. Available online: https://urlhaus.abuse.ch/ (accessed on 31 August 2024).
- Feodo Tracker—Tracking Feodo, Dridex, TrickBot, and Other Banking Trojans. 2024. Available online: https://feodotracker.abuse.ch/ (accessed on 31 August 2024).
- SSL Blacklist (SSLBL)—JA3 Fingerprints. 2024. Available online: https://sslbl.abuse.ch/ja3-fingerprints/ (accessed on 31 August 2024).
- CISA Known Exploited Vulnerabilities Catalog. 2024. Available online: https://www.cisa.gov/known-exploited-vulnerabilities-catalog (accessed on 31 August 2024).
- Ransomware.live—Tracking Ransomware Victims and Groups. 2024. Available online: https://www.ransomware.live/ (accessed on 31 August 2024).
- ThreatFox—Sharing Indicators of Compromise for Threat Intelligence. 2024. Available online: https://threatfox.abuse.ch/ (accessed on 31 August 2024).
- The MITRE Corporation. MITRE ATT&CK®: Adversarial Tactics, Techniques, and Common Knowledge. 2015. Available online: https://attack.mitre.org (accessed on 6 September 2025).
- Tay, J.K.; Aghaeepour, N.; Hastie, T.; Tibshirani, R. Feature-weighted elastic net: Using “features of features” for better prediction. Stat. Sin. 2023, 33, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.W.; Lai, K.S. Lag order and critical values of the augmented Dickey–Fuller test. J. Bus. Econ. Stat. 1995, 13, 277–280. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Chen, H.; Wan, Q.; Wang, Y. Refined Diebold-Mariano test methods for the evaluation of wind power forecasting models. Energies 2014, 7, 4185–4198. [Google Scholar] [CrossRef]
- Google. T5-base (google-t5/t5-base) model card on Hugging Face. 2025. Available online: https://huggingface.co/google-t5/t5-base (accessed on 6 September 2025).
- Arslan, M.; Ghanem, H.; Munawar, S.; Cruz, C. A Survey on RAG with LLMs. Procedia Comput. Sci. 2024, 246, 3781–3790. [Google Scholar] [CrossRef]
- Ahmed, Y.; Azad, M.A.; Asyhari, T. Rapid forecasting of cyber events using machine learning-enabled features. Information 2024, 15, 36. [Google Scholar] [CrossRef]
- Kalouptsoglou, I.; Tsoukalas, D.; Siavvas, M.; Kehagias, D.; Chatzigeorgiou, A.; Ampatzoglou, A. Time series forecasting of software vulnerabilities using statistical and deep learning models. Electronics 2022, 11, 2820. [Google Scholar] [CrossRef]
- Sufi, F.; Alsulami, M. Quantifying Temporal Dynamics in Global Cyber Threats: A GPT-Driven Framework for Risk Forecasting and Strategic Intelligence. Mathematics 2025, 13, 1670. [Google Scholar] [CrossRef]


| Tactic | RMSE | MAE | MAPE (%) | Selected Estimator | Exact Match (%) | Coverage (%) |
|---|---|---|---|---|---|---|
| Initial Access | 0.82 | 0.63 | 7.9 | ADIDA | 83.2 | 90.5 |
| Execution | 2.35 | 1.91 | 14.8 | SARIMAX | 85.1 | 92.0 |
| Persistence | 1.12 | 0.88 | 6.3 | SARIMAX | 84.7 | 91.8 |
| Privilege Escalation | 3.46 | 2.74 | 19.2 | SARIMAX | 82.9 | 90.7 |
| Defense Evasion | 2.08 | 1.54 | 12.4 | SARIMAX | 83.5 | 91.1 |
| Credential Access | 1.27 | 0.94 | 8.6 | SARIMAX | 84.0 | 91.6 |
| Discovery | 1.69 | 1.33 | 9.2 | SARIMAX | 83.8 | 91.0 |
| Lateral Movement | 2.97 | 2.21 | 17.5 | ADIDA | 82.4 | 90.2 |
| Collection | 1.44 | 1.01 | 10.3 | SARIMAX | 84.3 | 91.7 |
| Command and Control | 3.88 | 3.12 | 21.7 | SARIMAX | 82.7 | 90.8 |
| Exfiltration | 2.54 | 1.97 | 15.2 | SARIMAX | 83.6 | 91.2 |
| Impact | 2.15 | 1.62 | 13.1 | SARIMAX | 84.9 | 91.9 |
| Resource Development | 0.96 | 0.72 | 6.8 | ADIDA | 83.0 | 90.9 |
| Reconnaissance | 0.73 | 0.55 | 5.4 | ADIDA | 85.4 | 92.1 |
| Average | – | – | – | – | 84.5 | 91.3 |
| Standard deviation | – | – | – | – | ±0.9 | ±0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hernandez-Suarez, A.; Sanchez-Perez, G.; Toscano-Medina, L.K.; Perez-Meana, H.; Portillo-Portillo, J.; Olivares Mercado, J.; Escamilla-Hernandez, E. Bridging Forecasts and Mitigation Through Retrieval-Augmented Time-Series Models for Cybersecurity Incidents. Eng. Proc. 2026, 123, 24. https://doi.org/10.3390/engproc2026123024
Hernandez-Suarez A, Sanchez-Perez G, Toscano-Medina LK, Perez-Meana H, Portillo-Portillo J, Olivares Mercado J, Escamilla-Hernandez E. Bridging Forecasts and Mitigation Through Retrieval-Augmented Time-Series Models for Cybersecurity Incidents. Engineering Proceedings. 2026; 123(1):24. https://doi.org/10.3390/engproc2026123024
Chicago/Turabian StyleHernandez-Suarez, Aldo, Gabriel Sanchez-Perez, Linda Karina Toscano-Medina, Hector Perez-Meana, Jose Portillo-Portillo, Jesus Olivares Mercado, and Enrique Escamilla-Hernandez. 2026. "Bridging Forecasts and Mitigation Through Retrieval-Augmented Time-Series Models for Cybersecurity Incidents" Engineering Proceedings 123, no. 1: 24. https://doi.org/10.3390/engproc2026123024
APA StyleHernandez-Suarez, A., Sanchez-Perez, G., Toscano-Medina, L. K., Perez-Meana, H., Portillo-Portillo, J., Olivares Mercado, J., & Escamilla-Hernandez, E. (2026). Bridging Forecasts and Mitigation Through Retrieval-Augmented Time-Series Models for Cybersecurity Incidents. Engineering Proceedings, 123(1), 24. https://doi.org/10.3390/engproc2026123024

