Study of the Influence of the Geometric Shape of Structural Elements on the Hydrodynamic Pattern in a Radial Precipitator †
Abstract
1. Introduction
2. Materials and Methods
2.1. Numerical Model
2.2. Construction Modification
- Effect of the inlet slope γ—MODIFG:
2.3. Model Optimization
- Effect of the radius R—MODIFR:
3. Results and Discussion
3.1. Optimized Design
3.2. Testing in Different Operation Modes
4. Conclusions
- the velocity of the water increases from 0.26 to 0.58 m/s;
- the pressure decreases from 240 to 90 Pa;
- the velocity of the sand increases from 0.15 to 0.43 m/s.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoseini, S.; Najafi, G.; Ghobadian, B.; Akbarzadeh, A. Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses. Chem. Eng. J. 2021, 413, 127497. [Google Scholar] [CrossRef]
- Tamburini, A.; Gagliano, G.; Micale, G.; Brucato, A.; Scargiali, F.; Ciofalo, M. Direct numerical simulations of creeping to early turbulent flow in unbaffled and baffled stirred tanks. Chem. Eng. Sci. 2018, 192, 161–175. [Google Scholar] [CrossRef]
- Neria, I.; Alonzo-Garcia, A.; Martínez-Delgadillo, S.; Mendoza-Escamilla, V.; Yáñez-Varela, J.; Verdin, P.; Rivadeneyra-Romero, G. PIV and dynamic LES of the turbulent stream and mixing induced by a V-grooved blade axial agitator. Chem. Eng. J. 2019, 374, 1138–1152. [Google Scholar] [CrossRef]
- Saikali, E.; Rodil, M.; Bois, G.; Bieder, U.; Leterrier, N.; Bertrand, M.; Dolias, Y. Validation of the hydrodynamics in a turbulent un-baffled stirred tank: A necessity for vortex-reactor precipitation studies. Chem. Eng. Sci. 2020, 214, 115426. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, F.; Liu, J.; Liu, Q.; Hou, Y.; Yang, N.; Xie, G. Numerical Simulation Study of Gas-Liquid Two-Phase Flow in a Pressurized Leaching Stirred Tank. Processes 2024, 12, 896. [Google Scholar] [CrossRef]
- Li, L.; Xu, B. CFD simulation of hydrodynamics characteristics in a tank with forward-reverse rotating impeller. J. Taiwan Inst. Chem. Eng. 2022, 131, 104174. [Google Scholar] [CrossRef]
- Perret, Y. Hydrodynamics of Hydrate Slurries in Prepicipators Application to Precipitators Design. In Essential Readings in Light Metals; Donaldson, D., Raahauge, B.E., Eds.; Springer: Cham, Switzerland, 2016; pp. 559–562. [Google Scholar] [CrossRef]
- Schmid, H.J.; Stolz, S.; Buggisch, H. On the Modelling of the Electro-Hydrodynamic Flow Field in Electrostatic Precipitators. Flow Turbul. Combust. 2002, 68, 63–89. [Google Scholar] [CrossRef]
- Schmid, H.J. On the modelling of the particle dynamics in electro-hydrodynamic flow fields: II. Influences of inhomogeneities on electrostatic precipitation. Powder Technol. 2003, 135–136, 136–149. [Google Scholar] [CrossRef]
- Soldati, A. On the effects of the electrohydrodynamic flows and turbulence on aerosol transport and collection in wire-plate electrostatic precipitators. J. Aerosol Sci. 2000, 31, 293–305. [Google Scholar] [CrossRef]
- Nepf, H. Conceptual Model of Diffusion. Transport Processes in the Environment, Lecture Notes MIT OpenCourseWare: 2008. Available online: https://ocw.mit.edu/courses/1-061-transport-processes-in-the-environment-fall-2008/pages/lecture-notes/1-anim/ (accessed on 30 September 2025).
- Ansys CFX-Solver Manager User’s Guide; Simulate the Future; ANSYS, Inc.: Canonsburg, PA, USA, 2021; pp. 1–209.
- ANSYS CFX Tutorials, Release 18.0; Ansys CFX, Computational Fluid Dynamics (CFD) Software: Canonsburg, PA, USA, 2017; pp. 1–1052.
- Patankar, N.A.; Joseph, D.D. Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach. Int. J. Multiph. Flow 2001, 27, 1659–1684. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Tamer, M.; Villegas, R.; Chiappetta, A.; Mozaffari, F. Application of CFD to Analyze the Hydrodynamic Behaviour of a Bioreactor with a Double Impeller. Processes 2019, 7, 694. [Google Scholar] [CrossRef]
- Liu, X.; García, M. Computational fluid dynamics modeling for the design of large primary settling tanks. J. Hydraul. Eng. 2011, 137. [Google Scholar] [CrossRef]
- Georgieva, V. Generalized Network Modeling of Water Purification Processes; Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering: Sofia, Bulgaria, 2017; pp. 1–46. [Google Scholar]
- Arsov, R.; Draganov, D.; Kostova, I.; Koleva-Simeonova, M. Design of Wastewater Treatment Plants; Tehnika Publishing House: Sofia, Bulgaria, 2017; pp. 1–840. [Google Scholar]
- Bankova, A.; Yangyozov, A.; Tenev, S.; Atanasov, A. Simulation of a Two-Phase Fluid Flow in a Design Solution of a Secondary Radial Settling Tank for Wastewater Treatment. Eng. Proc. 2025, 104, 21. [Google Scholar] [CrossRef]
- Toneva, D.; Dimitrova, D. Some Aspects of the Water Crisis in Bulgaria. In Environment. Technology. Resources. Rezekne, Latvia, Proceedings of the 15th International Scientific and Practical Conference; Rezekne Academy of Technologies: Rēzekne, Lettland, 2024; Volume I, pp. 373–377. [Google Scholar] [CrossRef]
- Nikolova, N.; Toneva, D.; Tsonev, Y.; Burgess, B.; Tenekedjiev, K. Novel Methods to Construct Empirical CDF for Continuous Random Variables using Censor Data. In Proceedings of the 2020 IEEE 10th International Conference on Intelligent Systems (IS), Varna, Bulgaria, 28–30 August 2020; pp. 61–68. [Google Scholar] [CrossRef]
- Song, S.; Le-Clech, P.; Shen, Y. Microscale fluid and particle dynamics in filtration processes in water treatment: A review. Water Res. 2023, 233, 119746. [Google Scholar] [CrossRef] [PubMed]
- Allam, A.N.; Ben-Mansour, R.; Habib, M.A. Computational Fluid Dynamics of Wastewater Treatment Using Sand Filter. In Proceedings of the 2024 IEEE Sustainable Power and Energy Conference (iSPEC), Kuching, Sarawak, Malaysia, 24–27 November 2024; pp. 309–314. [Google Scholar] [CrossRef]






| Name | Value |
|---|---|
| Height, H | 1 m |
| Diameter, D | 2 m |
| Volume, V | 1.32–0.52 m3 |
| Height of the inlet channel, hin | 0.034 m |
| Output area 1, Sout,1 | 0.0502062 m2 |
| Output area 2, Sout,2 | 0.0430629 m2 |
| Slope, β | 86.8° |
| Entrance area Sin | 0.206857 m2 |
| Outlet outer diameter 1 water, Dout,2 | 0.236 m |
| Outer diameter. outlet 2 water and sand, Dout,1 | 0.418 m |
| Name | Value | Condition |
|---|---|---|
| Sand density | 2300 kg/m3 | constant |
| Size | 1–10 mm | constant |
| Water density | 997 kg/m3 | constant |
| Mass flow rate “water” | 62 kg/s | constant |
| Mass flow rate “sand” | 1–10 kg/s | variable |
| Number of particles | 200; 5000; 12,000 | variable |
| Turbulence model | k-eps; SST | variable |
| Water velocity inlet | 0.3 m/s | constant |
| Outlet pressure 1 | 0 Pa | constant |
| Outlet pressure 2 | 0 Pa | constant |
| Name | Value |
|---|---|
| Advection scheme | High resolution |
| Max iterations | 150 |
| Convergence criteria RMS residual target | 1 × 105 |
| Max. Particle Intg. Time Step | 1 × 1010 s |
| Particle Termination Control Maximum Tracking Time | 10 s |
| Maximum Tracking Distance | 10 m |
| Max.num. Integration steps | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bankova, A.; Yangyozov, A.; Tenev, S.; Atanasov, A. Study of the Influence of the Geometric Shape of Structural Elements on the Hydrodynamic Pattern in a Radial Precipitator. Eng. Proc. 2026, 122, 12. https://doi.org/10.3390/engproc2026122012
Bankova A, Yangyozov A, Tenev S, Atanasov A. Study of the Influence of the Geometric Shape of Structural Elements on the Hydrodynamic Pattern in a Radial Precipitator. Engineering Proceedings. 2026; 122(1):12. https://doi.org/10.3390/engproc2026122012
Chicago/Turabian StyleBankova, Aleksandrina, Anastas Yangyozov, Stefan Tenev, and Asparuh Atanasov. 2026. "Study of the Influence of the Geometric Shape of Structural Elements on the Hydrodynamic Pattern in a Radial Precipitator" Engineering Proceedings 122, no. 1: 12. https://doi.org/10.3390/engproc2026122012
APA StyleBankova, A., Yangyozov, A., Tenev, S., & Atanasov, A. (2026). Study of the Influence of the Geometric Shape of Structural Elements on the Hydrodynamic Pattern in a Radial Precipitator. Engineering Proceedings, 122(1), 12. https://doi.org/10.3390/engproc2026122012

