Exploring the Application of UAV-Multispectral Sensors for Proximal Imaging of Agricultural Crops †
Abstract
1. Introduction
2. Study Area
3. Methodology
3.1. Experiment Setup
3.2. Image Layer Staking
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Kovacs, J.M. The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Rejith, R.G.; Sahoo, R.N.; Ranjan, R.; Kondraju, T.; Bhandari, A.; Gakhar, S. Estimating Leaf Area Index of Wheat Using UAV-Hyperspectral Remote Sensing and Machine Learning. Biol. Life Sci. Forum 2025, 41, 11. [Google Scholar] [CrossRef]
- Rejith, R.G.; Sahoo, R.N.; Verrelst, J.; Ranjan, R.; Gakhar, S.; Anand, A.; Kondraju, T.; Kumar, S.; Kumar, M.; Dhandapani, R. UAV-Based Retrieval of Wheat Canopy Chlorophyll Content Using a Hybrid Machine Learning Approach. In Proceedings of the 2023 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), Bangalore, India, 10–13 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Sahoo, R.N.; Gakhar, S.; Rejith, R.G.; Verrelst, J.; Ranjan, R.; Kondraju, T.; Meena, M.C.; Mukherjee, J.; Daas, A.; Kumar, S.; et al. Optimizing the Retrieval of Wheat Crop Traits from UAV-Borne Hyperspectral Image with Radiative Transfer Modelling Using Gaussian Process Regression. Remote Sens. 2023, 15, 5496. [Google Scholar] [CrossRef]
- Sahoo, R.N.; Rejith, R.G.; Gakhar, S.; Verrelst, J.; Ranjan, R.; Kondraju, T.; Meena, M.C.; Mukherjee, J.; Dass, A.; Kumar, S.; et al. Estimation of Wheat Biophysical Variables through UAV Hyperspectral Remote Sensing Using Machine Learning and Radiative Transfer Models. Comput. Electron. Agric. 2024, 221, 108942. [Google Scholar] [CrossRef]
- Sahoo, R.N.; Rejith, R.G.; Gakhar, S.; Ranjan, R.; Meena, M.C.; Dey, A.; Mukherjee, J.; Dhakar, R.; Meena, A.; Daas, A.; et al. Drone Remote Sensing of Wheat N Using Hyperspectral Sensor and Machine Learning. Precis. Agric. 2024, 25, 704–728. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T. What Good Are Unmanned Aircraft Systems for Agricultural Remote Sensing and Precision Agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef]
- Aasen, H.; Bolten, A. Multi-Temporal High-Resolution Imaging Spectroscopy with Hyperspectral 2D Imagers—From Theory to Application. Remote Sens. Environ. 2018, 205, 374–389. [Google Scholar] [CrossRef]
- Feng, H.; Tao, H.; Li, Z.; Yang, G.; Zhao, C. Comparison of UAV RGB Imagery and Hyperspectral Remote-Sensing Data for Monitoring Winter Wheat Growth. Remote Sens. 2022, 14, 4158. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty Five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Gómez-Candón, D.; Virlet, N.; Labbé, S.; Jolivot, A.; Regnard, J.-L. Field Phenotyping of Water Stress at Tree Scale by UAV-Sensed Imagery: New Insights for Thermal Acquisition and Calibration. Precision Agric. 2016, 17, 786–800. [Google Scholar] [CrossRef]
- Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, Sensors, and Data Processing in Agroforestry: A Review towards Practical Applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef]
- Mahlein, A.-K. Plant Disease Detection by Imaging Sensors–Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third ERTS-1 Symposium; NASA SP-351; NASA: Washington, DC, USA, 1974; pp. 309–317. [Google Scholar]
- Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; Vandemark, G.J.; Miklas, P.N.; Carter, A.H.; Pumphrey, M.O.; Knowles, N.R. Low-Altitude, High-Resolution Aerial Imaging Systems for Row and Field Crop Phenotyping: A Review. Eur. J. Agron. 2015, 70, 112–123. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field High-Throughput Phenotyping: The New Crop Breeding Frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing. Remote Sens. 2016, 8, 1031. [Google Scholar] [CrossRef]
- Li, Y.; Guo, S.; Jia, S.; Yan, Y.; Jia, H.; Zhang, W. Quantifying the Effects of UAV Flight Altitude on the Multispectral Monitoring Accuracy of Soil Moisture and Maize Phenotypic Parameters. Agronomy 2025, 15, 2137. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Tsai, C.-H.; Lin, Y.-C. An Accelerated Image Matching Technique for UAV Orthoimage Registration. ISPRS J. Photogramm. Remote Sens. 2017, 128, 130–145. [Google Scholar] [CrossRef]
- Karami, E.; Prasad, S.; Shehata, M. Image Matching Using SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted Images. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Arya, K.V.; Gupta, P.; Kalra, P.K.; Mitra, P. Image Registration Using Robust M-Estimators. Pattern Recognit. Lett. 2007, 28, 1957–1968. [Google Scholar] [CrossRef]
- Ngo Thanh, T.; Nagahara, H.; Sagawa, R.; Mukaigawa, Y.; Yachida, M.; Yagi, Y. An Adaptive-Scale Robust Estimator for Motion Estimation. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 2455–2460. [Google Scholar] [CrossRef]
- Liu, C.; Xu, J.; Wang, F. A Review of Keypoints’ Detection and Feature Description in Image Registration. Math. Probl. Eng. 2021, 2021, 8509164. [Google Scholar] [CrossRef]
- Guan, S.; Fukami, K.; Matsunaka, H.; Okami, M.; Tanaka, R.; Nakano, H.; Sakai, T.; Nakano, K.; Ohdan, H.; Takahashi, K. Assessing Correlation of High-Resolution NDVI with Fertilizer Application Level and Yield of Rice and Wheat Crops Using Small UAVs. Remote Sens. 2019, 11, 112. [Google Scholar] [CrossRef]
- Jain, K.; Pandey, A. Calibration of Satellite Imagery with Multispectral UAV Imagery. J. Indian Soc. Remote Sens. 2021, 49, 479–490. [Google Scholar] [CrossRef]
- Gallardo-Salazar, J.L.; Rosas-Chavoya, M.; Pompa-García, M.; López-Serrano, P.M.; García-Montiel, E.; Meléndez-Soto, A. Multi-Temporal NDVI Analysis Using UAV Images of Tree Crowns in a Northern Mexican Pine-Oak Forest. J. For. Res. 2023, 34, 1855–1867. [Google Scholar] [CrossRef]





| Sensor Type | Bands (Centre Wavelength ± FWHM) | Spatial Resolution | Data Format | Suitability for Proximal Imaging | Advantages | Limitations |
|---|---|---|---|---|---|---|
| RGB DSLR (generic) | 3 bands (Blue ~450 nm, Green ~550 nm, Red ~650 nm) | 12–24 MP | Single image | Captures fine detail of leaves, but no spectral depth | Very high spatial resolution; low cost; easy to deploy | No NIR/Red-edge; cannot detect early stress [9,11] |
| Micasense RedEdge-MX | 5 bands (Blue 475 nm, Green 560 nm, Red 668 nm, Red-edge 717 nm, NIR 840 nm) | 1280 × 960 px | 5 separate TIFF images | Proven in UAV and proximal use; requires band alignment | Balanced cost vs. spectral info; strong vegetation indices | Band separation → parallax; ORB+RANSAC alignment needed (this study) |
| Parrot Sequoia+ | 4 bands (Green 550 nm, Red 660 nm, Red-edge 735 nm, NIR 790 nm) + RGB | 1280 × 960 px (multi) + RGB camera | 4 TIFFs + RGB JPEG | Lightweight; widely used | Simpler (fewer bands); RGB + NIR indices possible | Alignment/parallax issues remain; limited bands [13,14] |
| Sentera 6X Multispectral | 6 bands (Blue 450 nm, Green 530 nm, Red 670 nm, Red-edge 710 nm, NIR 840 nm, Wide NIR 940 nm) | 20 MP | 6 independent images | High spatial detail + spectral range | High resolution; broad crop stress sensitivity | More demanding alignment across bands |
| DJI P4 Multispectral | Blue 450 ± 16 nm; Green 560 ± 16 nm; Red 650 ± 16 nm; Red-edge 730 ± 16 nm; NIR 840 ± 26 nm | ~2.08 MP per band; plus RGB sensor | TIFFs (MS) + RGB JPEG | Effective for UAV and proximal use; limited detail for very close imagery | Compact; well-calibrated; NDVI/NDRE ready | Lower resolution per band; parallax between sensors; alignment needed |
| DJI Mavic 3M Multispectral | Green 560 ± 16 nm; Red 650 ± 16 nm; Red-edge 730 ± 16 nm; NIR 860 ± 26 nm | 4 × 5 MP MS + 20 MP RGB | Separate MS images + RGB | Good candidate for the current pipeline; better RGB helps texture/feature detection | Built-in light sensor; newer high-res RGB; portable | Alignment still needed; per-band resolution lower than RGB; possible close-range misalignment |
| Headwall Nano-Hyperspec | ~270 bands (400–1000 nm; 2–3 nm bandwidth) | Pushbroom, ~640 spatial pixels | Hyperspectral datacube | Suitable; requires motion control | Very high spectral detail; no parallax (single slit) | High data volume; calibration and motion correction needed; costly [10,19,20,21,28] |
| Headwall Co-Aligned HP™ (VNIR–SWIR) | VNIR: 400–1000 nm (340 bands, 6 nm FWHM); SWIR: 900–2500 nm (267 bands, 6 nm FWHM) | VNIR: 1020 px; SWIR: 640 px | Co-aligned hyperspectral datacube | Designed for UAV/remote sensing; less suited to handheld close-ups | Co-aligned optics minimise parallax; full VNIR–SWIR coverage | Heavy (~4 kg); high data volume; motion correction & calibration required; costly [10,19,20,21,28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondraju, T.T.; Sahoo, R.N.; Ramalingam, S.; Rejith, R.G.; Bhandari, A.; Ranjan, R.; Reddy, D.V.S.C. Exploring the Application of UAV-Multispectral Sensors for Proximal Imaging of Agricultural Crops. Eng. Proc. 2025, 118, 91. https://doi.org/10.3390/ECSA-12-26542
Kondraju TT, Sahoo RN, Ramalingam S, Rejith RG, Bhandari A, Ranjan R, Reddy DVSC. Exploring the Application of UAV-Multispectral Sensors for Proximal Imaging of Agricultural Crops. Engineering Proceedings. 2025; 118(1):91. https://doi.org/10.3390/ECSA-12-26542
Chicago/Turabian StyleKondraju, Tarun Teja, Rabi N. Sahoo, Selvaprakash Ramalingam, Rajan G. Rejith, Amrita Bhandari, Rajeev Ranjan, and Devanakonda Venkata Sai Chakradhar Reddy. 2025. "Exploring the Application of UAV-Multispectral Sensors for Proximal Imaging of Agricultural Crops" Engineering Proceedings 118, no. 1: 91. https://doi.org/10.3390/ECSA-12-26542
APA StyleKondraju, T. T., Sahoo, R. N., Ramalingam, S., Rejith, R. G., Bhandari, A., Ranjan, R., & Reddy, D. V. S. C. (2025). Exploring the Application of UAV-Multispectral Sensors for Proximal Imaging of Agricultural Crops. Engineering Proceedings, 118(1), 91. https://doi.org/10.3390/ECSA-12-26542

