Artificial-Intelligence-Enhanced Virtual Sensor System for Smart Farming: Modeling Ancestral Cultivation Practices in Simulink †
Abstract
1. Introduction
2. Methodology
2.1. System Architecture
2.2. Simulation of Environmental Sensors
2.2.1. Temperature Sensor
- Linear calibration:where is the resistance at temperature T (in ohms, ), T is the temperature (in degrees Celsius, °C), is the nominal resistance at 0 °C, and is the temperature coefficient of resistance (°C−1).
- Signal conditioning: Output scaled to 4–20 (mA), following typical industrial interface standards.
2.2.2. Capacitive Soil Moisture Sensor and Soil Density
2.2.3. Optical Sensor for Soil and Root Imaging
2.3. Development of AI-Based Modules
- A CNN-based soil classification system,
- A CNN-based moisture estimator,
- An image processing module for root density analysis.
2.3.1. Soil Classification Using Convolutional Neural Networks
2.3.2. Moisture Estimation Using CNN
2.3.3. Root Density Estimation via Image Processing
2.4. Integration and Testing Within Simulink
3. Implementation and Results
3.1. Environmental Sensor Simulation
3.2. AI-Based Image Modules
3.3. Integrated Decision-Support
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Kovacs, J.M. The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Arshad, J.; Sheheryar, C.A.A.; Rahmani, M.K.I.; Qayyum, A.; Nasir, R.; Chauhdary, S.T.; Almalki, K.J. Simulink-Driven Digital Twin Implementation for Smart Greenhouse Environmental Control. Eng. Innov. J. 2025, 10, 100679. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty-Five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision Agriculture and Food Security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Pumisacho, M.; Sherwood, S. El Cultivo de la Papa en Ecuador; INIAP: Quito, Ecuador, 2002. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I. Agroecology and the Search for a Truly Sustainable Agriculture; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2005. [Google Scholar]
- Cutini, M.; Bisaglia, C.; Brambilla, M.; Bragaglio, A.; Pallottino, F.; Assirelli, A.; Romano, E.; Montaghi, A.; Leo, E.; Pezzola, M.; et al. A Co-Simulation Virtual Reality Machinery Simulator for Advanced Precision Agriculture Applications. Agriculture 2023, 13, 1603. [Google Scholar] [CrossRef]
- Tapia-Mendez, E.; Hernandez-Sandoval, M.; Salazar-Colores, S.; Cruz-Albarran, I.A.; Tovar-Arriaga, S.; Morales-Hernandez, L.A. A Novel Deep Learning Approach for Precision Agriculture: Quality Detection in Fruits and Vegetables Using Object Detection Models. Agronomy 2025, 15, 1307. [Google Scholar] [CrossRef]
- Chourlias, A.; Violos, J.; Leivadeas, A. Virtual Sensors for Smart Farming: An IoT- and AI-Enabled Approach. Internet Things 2025, 21, 101611. [Google Scholar] [CrossRef]
- MathWorks Inc. Simulink User’s Guide; Mathworks: Natick, MA, USA, 2021; Available online: https://www.mathworks.com (accessed on 12 June 2025).
- Padhiary, M.; Roy, P.; Kumar, K. Simulation Software in the Design and AI-Driven Automation of All-Terrain Farm Vehicles and Implements for Precision Agriculture. Recent Prog. Sci. Eng. 2025, 1, 6. [Google Scholar] [CrossRef]
- López-Granados, F. Weed Detection for Site-Specific Weed Management: Mapping and Real-Time Approaches. Weed Res. 2011, 51, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, G.; Sun, X. Advanced Technologies of Soil Moisture Monitoring in Precision Agriculture: A Review. J. Agric. Food Res. 2024, 13, 101473. [Google Scholar] [CrossRef]
- Santos, T.T.; Valle, R.C.S.C.; Silva, F.M.; Amaral, A.J.; Campos, A.T.; Saraz, J.A.O. Modeling and Simulation of Temperature and Relative Humidity Inside a Growth Chamber. Energies 2019, 12, 4056. [Google Scholar] [CrossRef]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in Agriculture, Recent Advances and Future Challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-Go Soil Sensors for Precision Agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep Learning in Agriculture: A Survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Babalola, E.O.; Asad, M.H.; Bais, A. Soil Surface Texture Classification Using RGB Images Acquired Under Uncontrolled Field Conditions. IEEE Access 2023, 11, 67774–67785. [Google Scholar] [CrossRef]
- Dwivedi, R.K.; Kumari, N.; Bishnoi, A.; Pandey, R.P. Soil Identification and Classification Using Machine Learning: A Review. IEEE Access 2022, 11, 958–963. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Kim, D.; Kim, T.; Jeon, J.; Son, Y. Convolutional Neural Network-Based Soil Water Content and Density Prediction Model for Agricultural Land Using Soil Surface Images. Appl. Sci. 2023, 13, 2936. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, L.; Hu, Y.; Hu, X.; Song, W.; Wang, L. A Comprehensive Study of Deep Learning for Soil Moisture Prediction: Insights on Multiple Network Structures. Hydrol. Earth Syst. Sci. 2024, 28, 917–943. [Google Scholar] [CrossRef]
- Jiang, C.; Guo, X.; Li, Y.; Lai, N.; Peng, L.; Geng, Q. Multimodal Deep Learning Models in Precision Agriculture: Cotton Yield Prediction Based on Unmanned Aerial Vehicle Imagery and Meteorological Data. Agronomy 2025, 15, 1217. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN Feature Based Graph Convolutional Network for Weed and Crop Recognition in Smart Farming. Comput. Electron. Agric. 2020, 179, 105450. [Google Scholar] [CrossRef]
- Linaza, M.; Posada, J.; Bund, J.; Eisert, P.; Quartulli, M.; Döllner, J.; Pagani, A.; Olaizola, I.; Barriguinha, A.; Moysiadis, T.; et al. Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture. Agronomy 2021, 11, 1227. [Google Scholar] [CrossRef]
- Sattar, K.; Maqsood, U.; Hussain, Q.; Majeed, S.; Kaleem, S.; Babar, M.; Qureshi, B. Soil Texture Analysis Using Controlled Image Processing. Agric. Technol. 2024, 4, 100588. [Google Scholar] [CrossRef]
- Baumer Group. Pt100 Sensor Data Sheet. 2020. Available online: https://www.baumer.com (accessed on 17 June 2025).
- DFRobot. Capacitive Soil Moisture Sensor SKU: SEN0193. 2020. Available online: https://www.dfrobot.com (accessed on 20 June 2025).
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote Sensing for Crop Management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]



| Method | Task | Acc. (%) | F1 | Latency (ms) | N |
|---|---|---|---|---|---|
| CNN (proposed) | Soil classification | 93.4 | 0.92 | 185 | 480 |
| CNN (proposed) | Moisture estimation | 91.8 | 0.90 | 175 | 360 |
| CNN (proposed) | Root-density classification | 90.2 | 0.89 | 160 | 300 |
| Decision Tree | Soil classification | 72.4 | 0.70 | 45 | 480 |
| SVM (RBF) | Soil classification | 81.6 | 0.78 | 65 | 480 |
| Decision Tree | Moisture estimation | 70.5 | 0.68 | 42 | 360 |
| SVM (RBF) | Moisture estimation | 79.8 | 0.76 | 60 | 360 |
| Sensor Type | Model Range | RMSE | N (Test) |
|---|---|---|---|
| Temperature (PT100) | 0–50 °C (linear RTD) | 0.42 °C | 200 |
| Soil Moisture (Capacitive) | 10–45% VWC | 1.9% | 180 |
| Soil Density (binary) | Dense/Non-dense | N/A | 180 |
| Output Variable | Key Inputs | Range | Field Use |
|---|---|---|---|
| Bit force | Temperature, soil density, soil type | 0–120 N | Tillage-depth optimization |
| Shear force | Root density, moisture, grain structure | 0–95 N | Root-cutting calibration |
| Inertial force | Acceleration, soil density | 0–150 N | Tool stability/vibration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuenca Sánchez, A.; Proaño, P.; Quinte, S.M. Artificial-Intelligence-Enhanced Virtual Sensor System for Smart Farming: Modeling Ancestral Cultivation Practices in Simulink. Eng. Proc. 2025, 115, 4. https://doi.org/10.3390/engproc2025115004
Cuenca Sánchez A, Proaño P, Quinte SM. Artificial-Intelligence-Enhanced Virtual Sensor System for Smart Farming: Modeling Ancestral Cultivation Practices in Simulink. Engineering Proceedings. 2025; 115(1):4. https://doi.org/10.3390/engproc2025115004
Chicago/Turabian StyleCuenca Sánchez, Alan, Pablo Proaño, and Santiago Moises Quinte. 2025. "Artificial-Intelligence-Enhanced Virtual Sensor System for Smart Farming: Modeling Ancestral Cultivation Practices in Simulink" Engineering Proceedings 115, no. 1: 4. https://doi.org/10.3390/engproc2025115004
APA StyleCuenca Sánchez, A., Proaño, P., & Quinte, S. M. (2025). Artificial-Intelligence-Enhanced Virtual Sensor System for Smart Farming: Modeling Ancestral Cultivation Practices in Simulink. Engineering Proceedings, 115(1), 4. https://doi.org/10.3390/engproc2025115004

