FDM Process Parameters Impact on Roughness and Dimensional Accuracy of PLA Parts †
Abstract
1. Introduction
2. Methodology and Equipment
2.1. Software and Equipment
- -
- CATIA v5: A 3D computer-aided design (CAD) software used for product design. It is used in this work to create the model and generate the STL file.
- -
- Minitab 21: Statistical and data analysis software. It is used to perform the ANOVA analysis in this study.
- -
- Mitutoyo Surf test SJ-410: A highly accurate, high-performance portable roughness measuring device.
- -
- Mitutoyo 500-160-30: A digital caliper that is accurate, reliable, and easy-to-use for precision measurements, specific to the 500 series. It offers a measuring range of 0 to 150 mm (or 0 to 6 inches) and has 0.01 mm of resolution. In this work, it is used for dimensional accuracy measurements.
2.2. Procedures and Setup
2.3. Model Preparation
3. Results
3.1. Roughness Test
3.2. Dimensional Accuracy Test
4. Conclusions
- Layer thickness significantly impacts surface roughness (Ra). Surfaces are smoother with a smaller layer thickness (0.12 mm) compared to thicker ones (0.2 mm).
- Printing speed and temperature also influence RA and dimensional accuracy. A lower speed (40 mm/s) gives smoother surfaces, and optimal temperatures (200 °C) improve filament bonding without increasing surface roughness.
- Dimensional Accuracy: It was confirmed that the dimensional deviations of parts using optimum parameters remain within a 5% threshold.
- Inexpensive FDM potential: FDM printers produce high-quality products by fine-tuning parameters such as layer thickness, printing speed, and temperature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holzmann, P.; Breitenecker, R.J.; Soomro, A.A.; Schwarz, E.J. User entrepreneur business models in 3D printing. J. Manuf. Technol. Manag. 2017, 28, 75–94. [Google Scholar] [CrossRef]
- Cailleaux, S.; Sanchez-Ballester, N.M.; Gueche, Y.A.; Bataille, B.; Soulairol, I. Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines. J. Control Release 2021, 330, 821–841. [Google Scholar] [CrossRef] [PubMed]
- Anitha, R.; Arunachalam, S.; Radhakrishnan, P. Critical parameters influencing the quality of prototypes in fused deposition modelling. J. Mater. Process. Technol. 2001, 118, 385–388. [Google Scholar] [CrossRef]
- Galantucci, L.M.; Lavecchia, F.; Percoco, G. Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling. CIRP Ann. Manuf. Technol. 2010, 59, 247–250. [Google Scholar] [CrossRef]
- Galantucci, L.M.; Lavecchia, F.; Percoco, G. Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Ann. Manuf. Technol. 2009, 58, 189–192. [Google Scholar] [CrossRef]
- Huang, J.; Qin, Q.; Wang, J. A review of stereolithography: Processes and systems. Processes 2020, 8, 1138. [Google Scholar] [CrossRef]
- Yin, M.J.; Yao, M.; Gao, S.; Zhang, A.P.; Tam, H.Y.; Wai, P.K. Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors. Adv. Mater. 2016, 28, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zhao, H.; Peng, L.; Sun, Z. A review of research progress in selective laser melting (SLM). Micromachines 2023, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Atabak, G.; Hannah, T.K.; James, S.; Sam, B.; Dennis, D. Selective Laser Sintering for printing pharmaceutical dosage forms. J. Drug Deliv. Sci. Technol. 2023, 86, 104699. [Google Scholar] [CrossRef]
- Melenka, G.W.; Schofield, J.S.; Dawson, M.R.; Carey, J.P. Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer. Rapid Prototyp. J. 2015, 21, 618–627. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Zaoutsos, S.P. Optimising fused filament fabrication surface roughness for a dental implant. Mater. Manuf. Process. 2023, 38, 954–959. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Bagheri, A.; Sivatte-Adroer, M. Effect of printing parameters on dimensional error, surface roughness and porosity of FFF printed parts with grid structure. Polymers 2021, 13, 1213. [Google Scholar] [CrossRef] [PubMed]
- Kechagias, J.; Chaidas, D. Fused filament fabrication parameter adjustments for sustainable 3D printing. Mater. Manuf. Process. 2023, 38, 933–940. [Google Scholar] [CrossRef]
- ISO 12780-1:2011; Geometrical Product Specifications (GPS)—Straightness—Part 1: Vocabulary and Parameters of Straightness. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 12781-1:2011; Geometrical Product Specifications (GPS)—Flatness—Part 1: Vocabulary and Parameters of Flatness. International Organization for Standardization: Geneva, Switzerland, 2011.
- Mat, M.C.; Ramli, F.R.; Alkahari, M.R.; Sudin, M.N.; Abdollah, M.F.; Mat, S. Influence of layer thickness and infill design on the surface roughness of PLA, PETG and metal copper materials. Proc. Mech. Eng. Res. Day 2020, 7, 64–66. [Google Scholar]
- Wang, P.; Zou, B.; Ding, S.; Huang, C. Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin. Appl. Therm. Eng. 2019, 161, 114064. [Google Scholar] [CrossRef]
- Kamer, M.S.; Temiz, Ş.; Yaykaşlı, H.; Ahmet, K.A.; Orhan, A.K. Effect of printing speed on FDM 3D-printed PLA samples produced using different two printers. Int. J. 3D Printing Technol. Digit. Ind. 2022, 6, 438–448. [Google Scholar] [CrossRef]
- Ma, Q. Accuracy investigation of 3D printed PLA with various process parameters and different colors. Mater. Today Proc. 2021, 42, 3089–3096. [Google Scholar]
Level | Layer Thickness (mm) | Printing Speed (mm/s) | Temperature (°C) |
---|---|---|---|
1 | 0.12 | 40 | 190 |
2 | 0.16 | 60 | 200 |
3 | 0.2 | 80 | 210 |
Test No. | Layer Thickness (mm) | Printing Speed (mm/s) | Temperature (°C) | Average Ra Value (μm) |
---|---|---|---|---|
1 | 0.12 | 40 | 190 | 3.202 |
2 | 0.12 | 60 | 200 | 3.795 |
3 | 0.12 | 80 | 210 | 3.979 |
4 | 0.16 | 40 | 200 | 4.601 |
5 | 0.16 | 60 | 210 | 4.388 |
6 | 0.16 | 80 | 190 | 5.306 |
7 | 0.2 | 40 | 210 | 5.852 |
8 | 0.2 | 60 | 190 | 6.230 |
9 | 0.2 | 80 | 200 | 7.092 |
Source | DegFre a | Adjus SSqu b | Adju MSqu c | F-Value | p-Value |
---|---|---|---|---|---|
Layer thickness | 2 | 11.3361 | 5.66803 | 898.72 | 0.001 |
Printing Speed | 2 | 1.3159 | 0.65796 | 104.33 | 0.009 |
Printing Temperature | 2 | 0.2701 | 0.13506 | 21.41 | 0.045 |
Error | 2 | 0.0126 | 0.00631 | ||
Total | 8 | 12.9347 |
a. Dimensional Accuracy for Length in mm. | ||||
Design Dimension | Sample No. | Reading | Difference | Measuring Tools |
20 | 1 | 20.18 | 0.18 | Vernier Caliper |
2 | 20.36 | 0.36 | Vernier Caliper | |
3 | 20.61 | 0.61 | Vernier Caliper | |
4 | 20.52 | 0.52 | Vernier Caliper | |
5 | 20.54 | 0.54 | Vernier Caliper | |
6 | 20.43 | 0.43 | Vernier Caliper | |
7 | 20.64 | 0.64 | Vernier Caliper | |
8 | 20.33 | 0.33 | Vernier Caliper | |
9 | 20.44 | 0.44 | Vernier Caliper | |
b. Dimensional Accuracy for Thickness in mm. | ||||
Design Dimension | Sample No. | Reading | Difference | Measuring Tools |
3.2 | 1 | 3.23 | 0.03 | Vernier Caliper |
2 | 3.23 | 0.03 | Vernier Caliper | |
3 | 3.24 | 0.04 | Vernier Caliper | |
4 | 3.33 | 0.13 | Vernier Caliper | |
5 | 3.33 | 0.13 | Vernier Caliper | |
6 | 3.36 | 0.16 | Vernier Caliper | |
7 | 3.17 | 0.03 | Vernier Caliper | |
8 | 3.19 | 0.01 | Vernier Caliper | |
9 | 3.2 | 0 | Vernier Caliper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arreda, N.; Isksioui, H.; Boutahri, H.; L’kadiba, A.; Elmoussami, H. FDM Process Parameters Impact on Roughness and Dimensional Accuracy of PLA Parts. Eng. Proc. 2025, 112, 6. https://doi.org/10.3390/engproc2025112006
Arreda N, Isksioui H, Boutahri H, L’kadiba A, Elmoussami H. FDM Process Parameters Impact on Roughness and Dimensional Accuracy of PLA Parts. Engineering Proceedings. 2025; 112(1):6. https://doi.org/10.3390/engproc2025112006
Chicago/Turabian StyleArreda, Niama, Hamza Isksioui, Haitam Boutahri, Anasse L’kadiba, and Haj Elmoussami. 2025. "FDM Process Parameters Impact on Roughness and Dimensional Accuracy of PLA Parts" Engineering Proceedings 112, no. 1: 6. https://doi.org/10.3390/engproc2025112006
APA StyleArreda, N., Isksioui, H., Boutahri, H., L’kadiba, A., & Elmoussami, H. (2025). FDM Process Parameters Impact on Roughness and Dimensional Accuracy of PLA Parts. Engineering Proceedings, 112(1), 6. https://doi.org/10.3390/engproc2025112006