Deep Learning for Transformer-Based Plant Disease Detection: A Bibliometric Analysis †
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
3.1. Annual Production
3.2. Affiliations Analysis
3.3. Journals Analysis
3.4. Countries Production Analysis
3.5. Top Documents by Citations
3.6. Keyword Co-Occurrence Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, J.; Ong, W.E.; Teh, W.C.; Zhang, R. Enhanced Crop Disease Detection With EfficientNet Convolutional Group-Wise Transformer. IEEE Access 2024, 12, 44147–44162. [Google Scholar] [CrossRef]
- Nyarko, B.N.E.; Wu, W.B.; Zhou, Z.J.; Mohd, M.M.J. Improved YOLOv5m model based on Swin Transformer, K-means++, and Efficient Intersection over Union (EIoU) loss function for cocoa tree (Theobroma cacao) disease detection. J. Plant Prot. Res. 2024, 64, 265–274. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.; Guo, J.; Chen, F.; Li, Y.; Qiu, H. Improved FasterViT model for citrus disease diagnosis. Heliyon 2024, 10, e36092. [Google Scholar] [CrossRef]
- Christakakis, P.; Giakoumoglou, N.; Kapetas, D.; Tzovaras, D.; Pechlivani, E.-M. Vision Transformers in Optimization of AI-Based Early Detection of Botrytis cinerea. AI 2024, 5, 1301–1323. [Google Scholar] [CrossRef]
- De Silva, M.; Brown, D. Multispectral Plant Disease Detection with Vision Transformer–Convolutional Neural Network Hybrid Approaches. Sensors 2023, 23, 8531. [Google Scholar] [CrossRef]
- Yong, W.-C.; Ng, K.-W.; Haw, S.-C.; Naveen, P.; Ng, S.-B. Leaf Condition Analysis Using Convolutional Neural Network and Vision Transformer. Int. J. Comput. Digit. Syst. 2024, 16, 1685–1695. [Google Scholar] [CrossRef]
- Karthik, R.; Vardhan, G.V.; Khaitan, S.; Harisankar, R.N.R.; Menaka, R.; Lingaswamy, S.; Won, D. A dual-track feature fusion model utilizing Group Shuffle Residual DeformNet and swin transformer for the classification of grape leaf diseases. Sci. Rep. 2024, 14, 14510. [Google Scholar] [CrossRef] [PubMed]
- Hernández, I.; Gutiérrez, S.; Barrio, I.; Íñiguez, R.; Tardaguila, J. In-field disease symptom detection and localisation using explainable deep learning: Use case for downy mildew in grapevine. Comput. Electron. Agric. 2024, 226, 109478. [Google Scholar] [CrossRef]
- Kunduracioglu, I.; Pacal, I. Advancements in deep learning for accurate classification of grape leaves and diagnosis of grape diseases. J. Plant Dis. Prot. 2024, 131, 1061–1080. [Google Scholar] [CrossRef]
- Aboelenin, S.; Elbasheer, F.A.; Eltoukhy, M.M.; El-Hady, W.M.; Hosny, K.M. A hybrid Framework for plant leaf disease detection and classification using convolutional neural networks and vision transformer. Complex Intell. Syst. 2025, 11, 142. [Google Scholar] [CrossRef]
- Karthik, R.; Ajay, A.; Singh Bisht, A.; Illakiya, T.; Suganthi, K. A Deep Learning Approach for Crop Disease and Pest Classification Using Swin Transformer and Dual-Attention Multi-Scale Fusion Network. IEEE Access 2024, 12, 152639–152655. [Google Scholar] [CrossRef]
- Maqsood, Y.; Usman, S.M.; Alhussein, M.; Aurangzeb, K.; Khalid, S.; Zubair, M. Model Agnostic Meta-Learning (MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks. Comput. Mater. Contin. 2024, 79, 2795–2811. [Google Scholar] [CrossRef]
- Chakrabarty, A.; Ahmed, S.T.; Islam, M.d.F.U.; Aziz, S.M.; Maidin, S.S. An interpretable fusion model integrating lightweight CNN and transformer architectures for rice leaf disease identification. Ecol. Inform. 2024, 82, 102718. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, G.; Lv, T.; Zhang, X. Using a Hybrid Convolutional Neural Network with a Transformer Model for Tomato Leaf Disease Detection. Agronomy 2024, 14, 673. [Google Scholar] [CrossRef]
- Hamdi, E.B. Hidayaturrahman Ensemble of pre-trained vision transformer models in plant disease classification, an efficient approach. Procedia Comput. Sci. 2024, 245, 565–573. [Google Scholar] [CrossRef]
- Remya, S.; Anjali, T.; Abhishek, S.; Ramasubbareddy, S.; Cho, Y. The Power of Vision Transformers and Acoustic Sensors for Cotton Pest Detection. IEEE Open J. Comput. Soc. 2024, 5, 356–367. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Ye, R.; Zhu, S.; Huang, Y.; Chen, T.; Zhou, J.; Li, J.; Li, M.; Lv, C. High-Precision Tomato Disease Detection Using NanoSegmenter Based on Transformer and Lightweighting. Plants 2023, 12, 2559. [Google Scholar] [CrossRef] [PubMed]
- Ait Nasser, A.; Akhloufi, M.A. A Hybrid Deep Learning Architecture for Apple Foliar Disease Detection. Computers 2024, 13, 116. [Google Scholar] [CrossRef]
- Wang, B. Zero-exemplar deep continual learning for crop disease recognition: A study of total variation attention regularization in vision transformers. Front. Plant Sci. 2024, 14, 1283055. [Google Scholar] [CrossRef] [PubMed]
- Megalingam, R.K.; Gopakumar Menon, G.; Binoj, S.; Asandi Sai, D.; Kunnambath, A.R.; Manoharan, S.K. Cowpea leaf disease identification using deep learning. Smart Agric. Technol. 2024, 9, 100662. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Biblioshiny Bibliometrix for No Coders. Available online: https://bibliometrix.org/biblioshiny/biblioshiny1.html (accessed on 14 February 2025).
- VOSviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com/ (accessed on 14 February 2025).
- Zhang, Y.; Wa, S.; Zhang, L.; Lv, C. Automatic Plant Disease Detection Based on Tranvolution Detection Network With GAN Modules Using Leaf Images. Front. Plant Sci. 2022, 13, 875693. [Google Scholar] [CrossRef] [PubMed]
- Jajja, A.I.; Abbas, A.; Khattak, H.A.; Niedbała, G.; Khalid, A.; Rauf, H.T.; Kujawa, S. Compact Convolutional Transformer (CCT)-Based Approach for Whitefly Attack Detection in Cotton Crops. Agriculture 2022, 12, 1529. [Google Scholar] [CrossRef]
- Barman, U.; Sarma, P.; Rahman, M.; Deka, V.; Lahkar, S.; Sharma, V.; Saikia, M.J. ViT-SmartAgri: Vision Transformer and Smartphone-Based Plant Disease Detection for Smart Agriculture. Agronomy 2024, 14, 327. [Google Scholar] [CrossRef]
- Rezaei, M.; Diepeveen, D.; Laga, H.; Jones, M.G.K.; Sohel, F. Plant disease recognition in a low data scenario using few-shot learning. Comput. Electron. Agric. 2024, 219, 108812. [Google Scholar] [CrossRef]
- Parez, S.; Dilshad, N.; Alghamdi, N.S.; Alanazi, T.M.; Lee, J.W. Visual Intelligence in Precision Agriculture: Exploring Plant Disease Detection via Efficient Vision Transformers. Sensors 2023, 23, 6949. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Zhao, Q.; Yuan, P.; Chang, B. PMVT: A lightweight vision transformer for plant disease identification on mobile devices. Front. Plant Sci. 2023, 14, 1256773. [Google Scholar] [CrossRef]
- Shaheed, K.; Qureshi, I.; Abbas, F.; Jabbar, S.; Abbas, Q.; Ahmad, H.; Sajid, M.Z. EfficientRMT-Net—An Efficient ResNet-50 and Vision Transformers Approach for Classifying Potato Plant Leaf Diseases. Sensors 2023, 23, 9516. [Google Scholar] [CrossRef]
- Wu, J.; Wen, C.; Chen, H.; Ma, Z.; Zhang, T.; Su, H.; Yang, C. DS-DETR: A Model for Tomato Leaf Disease Segmentation and Damage Evaluation. Agronomy 2022, 12, 2023. [Google Scholar] [CrossRef]
Affiliation | Articles |
---|---|
China Agricultural University | 6 |
Murdoch University | 4 |
Sejong University | 3 |
Vellore Institute of Technology (VIT) | 3 |
VIT Chennai | 3 |
Brac University | 2 |
Egyptian Knowledge Bank (EKB) | 2 |
Igdir University | 2 |
Jilin Agricultural University | 2 |
National University of Science and Technology Politehnica | 2 |
Sources | Articles | Number of Citations | Start Publication Year |
---|---|---|---|
Frontiers in Plant Science | 6 | 102 | 2022 |
Sensors | 3 | 52 | 2023 |
Agronomy | 3 | 43 | 2022 |
Agriculture (Switzerland) | 1 | 21 | 2022 |
Computers and Electronics in Agriculture | 2 | 16 | 2024 |
IEEE Access | 2 | 3 | 2024 |
Computers | 1 | 3 | 2024 |
AI | 1 | 2 | 2024 |
Artificial Intelligence Review | 1 | 1 | 2024 |
Smart Agricultural Technology | 2 | 1 | 2024 |
Country | Total no. of Publications | Percentage of Publication | Total Citations |
---|---|---|---|
China | 11 | 30.5 | 126 |
India | 10 | 33.3 | 12 |
Australia | 6 | 16.6 | 15 |
Saudi Arabia | 5 | 13.8 | 21 |
South Korea | 4 | 11.1 | 32 |
Malaysia | 3 | 8.3 | 3 |
Pakistan | 3 | 8.3 | 22 |
Spain | 3 | 8.3 | 1 |
USA | 3 | 8.3 | 17 |
Paper | DOI | TC | TC per Year |
---|---|---|---|
Kunduracioglu, I., 2024, [9] j plant dis prot | 10.1007/s41348-024-00896-z | 14 | 7.00 |
Liu, Y., 2023, [17] plants | 10.3390/plants12132559 | 10 | 3.33 |
Zhang, Y., 2022, [23] front plant sci | 10.3389/fpls.2022.875693 | 63 | 15.75 |
Jajja, A., 2022, [24] agric | 10.3390/agriculture12101529 | 21 | 5.25 |
Barman, U., 2024, [25] agronomy | 10.3390/agronomy14020327 | 17 | 8.50 |
Rezaei, M., 2024, [26] comput electron agr | 10.1016/j.compag.2024.108812 | 15 | 7.50 |
Parez, S., 2023, [27] sensors-basel | 10.3390/s23156949 | 25 | 8.33 |
Li, G., 2023, [28] front plant sci | 10.3389/fpls.2023.1256773 | 24 | 8.00 |
Shaheed, K., 2023, [29] sensors | 10.3390/s23239516 | 21 | 7.00 |
Wu, J., 2022, [30] agronomy | 10.3390/agronomy12092023 | 19 | 4.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elghawth, R.; Abbaoui, W.; Ariss, A.; Ziti, S. Deep Learning for Transformer-Based Plant Disease Detection: A Bibliometric Analysis. Eng. Proc. 2025, 112, 29. https://doi.org/10.3390/engproc2025112029
Elghawth R, Abbaoui W, Ariss A, Ziti S. Deep Learning for Transformer-Based Plant Disease Detection: A Bibliometric Analysis. Engineering Proceedings. 2025; 112(1):29. https://doi.org/10.3390/engproc2025112029
Chicago/Turabian StyleElghawth, Raghiya, Wafae Abbaoui, Anass Ariss, and Soumia Ziti. 2025. "Deep Learning for Transformer-Based Plant Disease Detection: A Bibliometric Analysis" Engineering Proceedings 112, no. 1: 29. https://doi.org/10.3390/engproc2025112029
APA StyleElghawth, R., Abbaoui, W., Ariss, A., & Ziti, S. (2025). Deep Learning for Transformer-Based Plant Disease Detection: A Bibliometric Analysis. Engineering Proceedings, 112(1), 29. https://doi.org/10.3390/engproc2025112029