AI and Big Data for Assessing Carbon Emission in Tourism Areas: A Pilot Study in Phuket City †
Abstract
1. Introduction
2. Methodology
2.1. Study Site
2.2. Data Collection
2.3. Estimation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Figini, P.; Patuelli, R. Estimating the economic impact of tourism in the European Union: Review and computation. J. Travel Res. 2022, 61, 1409–1423. [Google Scholar] [CrossRef]
- Greif, S.; Houdre, H. How Travel and Tourism Can Reach Net Zero. 2024. Available online: https://www.weforum.org/stories/2024/01/travel-tourism-industry-net-zero/ (accessed on 25 May 2025).
- Sun, Y.Y.; Faturay, F.; Lenzen, M.; Gössling, S.; Higham, J. Drivers of global tourism carbon emissions. Nat. Commun. 2024, 15, 54582. [Google Scholar] [CrossRef] [PubMed]
- UNWTO. Glasgow Declaration Implementation Report 2023—Advancing Climate Action. 2023. Available online: https://www.e-unwto.org/doi/epdf/10.18111/9789284425242 (accessed on 25 February 2025).
- Lenzen, M.; Sun, Y.Y.; Faturay, F.; Ting, Y.P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Change 2018, 8, 522. [Google Scholar] [CrossRef]
- Huang, T.; Tang, Z. Estimation of tourism carbon footprint and carbon capacity. Int. J. Low-Carbon Technol. 2021, 16, 1040–1046. [Google Scholar] [CrossRef]
- Ma, D.; Hu, J.; Yao, F. Big data empowering low-carbon smart tourism study on low-carbon tourism O2O supply chain considering consumer behaviors and corporate altruistic preferences. Comput. Ind. Eng. 2021, 153, 107061. [Google Scholar] [CrossRef]
- Tsutsumi, A.; Furukawa, R.; Kitamura, Y.; Itsubo, N. G20 Tourism Carbon Footprint and COVID-19 Impact. Sustainability 2024, 16, 2222. [Google Scholar] [CrossRef]
- Scott, D.; Peeters, P.; Gössling, S. Can tourism deliver its “aspirational” greenhouse gas emission reduction targets? J. Sustain. Tour. 2010, 18, 393–408. [Google Scholar] [CrossRef]
- Jones, C. Scenarios for greenhouse gas emissions reduction from tourism: An extended tourism satellite account approach in a regional setting. J. Sustain. Tour. 2013, 21, 458–472. [Google Scholar] [CrossRef]
- Kitamura, Y.; Ichisugi, Y.; Karkour, S.; Itsubo, N. Carbon Footprint Evaluation Based on Tourist Consumption toward Sustainable Tourism in Japan. Sustainability 2020, 12, 2219. [Google Scholar] [CrossRef]
- Cadarso, M.Á.; Gómez, N.; López, L.A.; Tobarra, M.Á. Calculating tourism’s carbon footprint: Measuring the impact of investments. J. Clean. Prod. 2016, 111, 529–537. [Google Scholar] [CrossRef]
- Hunter, C. Sustainable Tourism and the Touristic Ecological Footprint. Environ. Dev. Sustain. 2002, 4, 7–20. [Google Scholar] [CrossRef]
- Casals Miralles, C.; Barioni, D.; Mancini, M.S.; Colón Jordà, J.; Boy Roura, M.; Ponsá Salas, S.; Llenas Argelaguet, L.; Galli, A. The Footprint of tourism: A review of Water, Carbon, and Ecological Footprint applications to the tourism sector. J. Clean. Prod. 2023, 422, 138568. [Google Scholar] [CrossRef]
- Mancini, M.S.; Barioni, D.; Danelutti, C.; Barnias, A.; Bračanov, V.; Pisce, G.C.; Chappaz, G.; Đuković, B.; Guarneri, D.; Lang, M.; et al. Ecological Footprint and tourism: Development and sustainability monitoring of ecotourism packages in Mediterranean Protected Areas. J. Outdoor Recreat. Tour. 2022, 38, 100513. [Google Scholar] [CrossRef]
- Knani, M.; Echchakoui, S.; Ladhari, R. Artificial intelligence in tourism and hospitality: Bibliometric analysis and research agenda. Int. J. Hosp. Manag. 2022, 107, 103317. [Google Scholar] [CrossRef]
- Samala, N.; Katkam, B.S.; Bellamkonda, R.S.; Rodriguez, R.V. Impact of AI and robotics in the tourism sector: A critical insight. J. Tour. Futures 2022, 8, 73–87. [Google Scholar] [CrossRef]
- Sousa, A.E.; Cardoso, P.; Dias, F. The Use of Artificial Intelligence Systems in Tourism and Hospitality: The Tourists’ Perspective. Adm. Sci. 2024, 14, 165. [Google Scholar] [CrossRef]
- Selvakumar, S. Big Data Analytics in Tourism Development and Marketing. In Redefining Tourism with AI and the Metaverse; Valeri, M., Shah, S.H.A., Al-Ghazali, B.M., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 249–278. [Google Scholar] [CrossRef]
- Binti Zakaria, N.F.F.; Mat Yazid, M.R.b.; Fadilah Yaacob, N.F. Quantifying Carbon Emission from Campus Transportation: A Case Study in Universiti Kebangsaan Malaysia. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1101, 012011. [Google Scholar] [CrossRef]
- Nilrit, S.; Sampanpanish, P. Emission Factor of Carbon Dioxide from In-Use Vehicles in Thailand. Mod. Appl. Sci. 2012, 6, 52. [Google Scholar] [CrossRef]
- Becken, S.; Simmons, D.G.; Frampton, C. Energy consumption patterns in the accommodation sector—The New Zealand case. Ecol. Econ. 2003, 39, 371–386. [Google Scholar] [CrossRef]
- Xu, X.; Dan, Z. Exploring the evolution of energy research in hospitality: Mapping knowledge trends, insights, and frontiers. Energy Rep. 2023, 10, 864–880. [Google Scholar] [CrossRef]
- Fatorachian, H.; Kazemi, H. Sustainable optimization strategies for on-demand transportation systems: Enhancing efficiency and reducing energy use. Sustain. Environ. 2025, 11, 2464388. [Google Scholar] [CrossRef]
- Zientara, P.; Jażdżewska-Gutta, M.; Bąk, M.; Zamojska, A. What drives tourists’ sustainable mobility at city destinations? Insights from ten European capital cities. J. Destin. Mark. Manag. 2024, 33, 100931. [Google Scholar] [CrossRef]
- Peeters, P.; Dubois, G. Tourism travel under climate change mitigation constraints. J. Transp. Geogr. 2010, 18, 447–457. [Google Scholar] [CrossRef]
- Gössling, S.; Hall, C.M.; Scott, D. The Challenges of Tourism as a Development Strategy in an Era of Global Climate Change. In Rethinking Development in a Carbon-Constrained World; Palosuo, E., Ed.; Ministry of Foreign Affairs: Helsinki, Finland, 2009; pp. 100–119. [Google Scholar]
Vehicles | Emission Factor (kg CO2-eq/km) |
---|---|
Trucks and vans | 0.29 |
Cars | 0.18 |
Motorcycles and Tuktuks | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boonrat, P.; Wattanasoontorn, V.; Ruktaengam, K.; Boonmeeprakob, K.; Roswhan, N. AI and Big Data for Assessing Carbon Emission in Tourism Areas: A Pilot Study in Phuket City. Eng. Proc. 2025, 108, 23. https://doi.org/10.3390/engproc2025108023
Boonrat P, Wattanasoontorn V, Ruktaengam K, Boonmeeprakob K, Roswhan N. AI and Big Data for Assessing Carbon Emission in Tourism Areas: A Pilot Study in Phuket City. Engineering Proceedings. 2025; 108(1):23. https://doi.org/10.3390/engproc2025108023
Chicago/Turabian StyleBoonrat, Pawita, Voravika Wattanasoontorn, Kanruthay Ruktaengam, Konthee Boonmeeprakob, and Napatsakorn Roswhan. 2025. "AI and Big Data for Assessing Carbon Emission in Tourism Areas: A Pilot Study in Phuket City" Engineering Proceedings 108, no. 1: 23. https://doi.org/10.3390/engproc2025108023
APA StyleBoonrat, P., Wattanasoontorn, V., Ruktaengam, K., Boonmeeprakob, K., & Roswhan, N. (2025). AI and Big Data for Assessing Carbon Emission in Tourism Areas: A Pilot Study in Phuket City. Engineering Proceedings, 108(1), 23. https://doi.org/10.3390/engproc2025108023