Improving the Mechanical Performance of TPU95A Filament in FDM 3D Printing via Parameter Optimization Using the Taguchi Method †
Abstract
1. Introduction
2. Methodology
2.1. Preparation of Tools and Materials and Parameter Settings
2.2. Tensile Test
2.3. Hardness Test
3. Results and Discussion
3.1. Analysis of Test Results
3.2. Hardness Test Results
4. Optimizing Parameters Using the Taguchi Method: Table Analysis
4.1. Analysis of Variance (ANOVA)
4.2. Identifying Optimal Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, S.; Liu, H.; Zhao, G.; Zhang, H.; Hou, F.; Xu, K. A code-based method for carbon emission prediction of 3D printing: A case study on the fused deposition modeling (FDM) 3D printing and comparison with conventional approach. J. Clean. Prod. 2024, 484, 144341. [Google Scholar] [CrossRef]
- Moradi, M.; Meiabadi, M.S.S.; Siddique, U.; Salimi, N.; Farahani, S. Circular economy-driven repair of 3D printed Polylactic Acid (PLA) by Fused Deposition Modelling (FDM) through statistical approach. Mater. Today Commun. 2025, 42, 111264. [Google Scholar] [CrossRef]
- Nadhif, M.H.; Ghiffary, M.M.; Irsyad, M.; Mazfufah, N.F.; Nurhaliza, F.; Rahman, S.F.; Rahyussalim, A.J.; Kurniawati, T. Anatomically and biomechanically relevant monolithic total disc replacement made of 3D-printed thermoplastic polyurethane. Polymers 2022, 14, 4160. [Google Scholar] [CrossRef]
- Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test. 2018, 69, 157–166. [Google Scholar] [CrossRef]
- Valerga, A.P.; Batista, M.; Salguero, J.; Girot, F. Influence of PLA filament conditions on characteristics of FDM parts. Materials 2018, 11, 1322. [Google Scholar] [CrossRef] [PubMed]
- Borah, J.; Chandrasekaran, M. Evaluation of tensile strength of 3D printed PLA component and Taguchi optimization. Neuro Quantol. 2022, 20, 1714–1726. [Google Scholar]
- Dong, H.; Wang, H.; Hazell, P.J.; Sun, N.; Dura, H.B.; Escobedo-Diaz, J.P. Effects of Printing Parameters on the Quasi-Static and Dynamic Compression Behaviour of 3D-Printed Re-entrant Auxetic Structures. Thin-Walled Struct. 2025, 210, 113000. [Google Scholar] [CrossRef]
- Wang, Q.; Han, S.; Yang, J.; Li, Z.; An, M. Optimizing printing and rheological parameters for 3D printing with cementitious materials. Autom. Constr. 2025, 169, 105881. [Google Scholar] [CrossRef]
- Hamidi, M.N.; Abdullah, J.; Mahmud, A.S.; Hassan, M.H.; Zainoddin, A.Y. Influence of Thermoplastic Polyurethane (TPU) and Printing Parameters on The Thermal and Mechanical Performance of Polylactic Acid (PLA)/Thermoplastic Polyurethane (TPU) Polymer. Polym. Test. 2025, 143, 108697. [Google Scholar] [CrossRef]
- Hikmat, M.; Rostam, S.; Ahmed, Y.M. Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results Eng. 2021, 11, 100264. [Google Scholar] [CrossRef]
- Madani, T.; Boukraa, M.; Aissani, M.; Chekifi, T.; Ziadi, A.; Zirari, M. Experimental investigation and numerical analysis using Taguchi and ANOVA methods for underwater friction stir welding of aluminium alloy 2017 process improvement. Int. J. Press. Vessel. Pip. 2023, 201, 104879. [Google Scholar] [CrossRef]
- Ramesh UdhayaKumar, A.; Satish Kumar, S. Multiobjective optimization of electric discharge machining of an Al–SiCp composite using the Taguchi–PCA method as well as the firefly and cuckoo search algorithms. Trans. Can. Soc. Mech. Eng. 2022, 46, 503–523. [Google Scholar] [CrossRef]
- Parthiban, V.; Vijayakumar, S.; Sakthivel, M. Optimization of high-speed turning parameters for Inconel 713C based on Taguchi grey relational analysis. Trans. Can. Soc. Mech. Eng. 2019, 43, 416–430. [Google Scholar] [CrossRef]
- Mardiyana, D.; Sumarno, D.I.; Yudono, M.A.S.; Islami, L.A. Kajian Kelayakan Sifat Mekanik Produk 3D Printing FDM Berfilamen eFlex TPU-95A untuk Aplikasi Polisi Tidur. J. Rekayasa Mesin 2024, 19, 457–468. [Google Scholar] [CrossRef]
- Konan, F.K.; Hartiti, B.; Batan, A.; Aka, B.; Fadili, S.; Thevenin, P. Zinc oxide texture-(0 0 2) nanomaterials prepared by sol–gel process via Taguchi method L9 (34). Mater. Today Proc. 2024; in press. [Google Scholar]
- Gurugubelli, S.; Chekuri, R.B.R.; Penmetsa, R.V. Experimental investigation and optimization of turning process of EN8 steel using Taguchi L9 orthogonal array. Mater. Today Proc. 2022, 58, 233–237. [Google Scholar] [CrossRef]
- Olubunmi, B.E.; Karmakar, B.; Aderemi, O.M.; Auta, M.; Halder, G. Parametric optimization by Taguchi L9 approach towards biodiesel production from restaurant waste oil using Fe-supported anthill catalyst. J. Environ. Chem. Eng. 2020, 8, 104288. [Google Scholar] [CrossRef]
- Pratama, W.H. Optimasi Parameter Proses 3D Printing Terhadap Kuat Tarik Material Filamen PLA+ Menggunakan Metode Taguchi. Sprocket J. Mech. Eng. 2021, 3, 39–45. [Google Scholar] [CrossRef]
- Ma, W.; Liu, H.; Wang, G.; Xiao, J. An elastodynamic modeling approach based on experimental substructuring for a mobile hybrid robot. Mech. Mach. Theory 2025, 205, 105892. [Google Scholar] [CrossRef]
- Waly, N.M.; Hassan, H.; Murata, R.; Sailor, D.J.; Mahmoud, H. Experimental approach to reduce uncertainty in estimating the thermal performance of buildings’ envelopes in hot climates. Dev. Built Environ. 2025, 21, 100589. [Google Scholar] [CrossRef]
- Sharma, S.; Dvivedi, A. On material removal analysis of simultaneous electrochemical and electrodischarge machining process through analytical, numerical and experimental approaches. J. Manuf. Process. 2025, 135, 204–215. [Google Scholar] [CrossRef]
- Spoerk, M.; Savandaiah, C.; Arbeiter, F.; Sapkota, J.; Holzer, C. Optimization of mechanical properties of glass-spheres-filled polypropylene composites for extrusion-based additive manufacturing. Polym. Compos. 2019, 40, 638–651. [Google Scholar] [CrossRef]
- Karuniawan, B.W.; Rachman, F.; Yoningtias, M.T. Optimasi Parameter Mesin Printer 3d Terhadap Kekasaran Permukaan Produk Material Abs Menggunakan Metode Taguchi. Austenit 2022, 14, 61–68. [Google Scholar] [CrossRef]
- Riza, E.I.; Budiyantoro, C.; Nugroho, A.W. Peningkatan kekuatan lentur produk 3d printing berbahan petg dengan optimasi parameter proses menggunakan metode Taguchi. Media Mesin Maj. Tek. Mesin 2020, 21, 66–75. [Google Scholar] [CrossRef]
- JIS K6251-2017; Rubber, Vulcanized or Thermoplastic-Determination of Tensile Stress-Strain Properties. Japanese Standards Association: Tokyo, Japan, 2017.
- Chaussé, J.; Girard, V.-D.; Perron, T.; Challut, T.; Vermette, P. Characterization of bacterial cellulose produced by the KomEt strain isolated from a kombucha SCOBY. Biocatal. Agric. Biotechnol. 2024, 58, 103172. [Google Scholar] [CrossRef]
- Appadu, S.; Ting, T.M.; Ratnam, C.T.; Ahmad, S.; Chen, R.S.; Gohs, U. Effect of Radiation Sensitizer on the Friction, Mechanical and Thermal Degradation Properties of Electron Beam cured FKM-PTFE Composite. Radiat. Phys. Chem. 2024, 223, 111875. [Google Scholar] [CrossRef]
- Wullur, C.W.; Andriyono, A. Analisis Perbandingan Kekuatan Tarik Roller Chain (Suzuki Genuine Parts) dan (Indoparts) Satria FU 150. Mustek Anim HA 2019, 8, 132–140. [Google Scholar] [CrossRef]
- Saputra, R.S.; Khoirudin, K.; Karyadi, K.; Hidayat, S.T.; Cahyo, T.D.; Ramadan, T. Optimasi Uji Tegangan Tarik Pengelasan Tungsten Inert Gas pada Penggabungan Beda Material Baja Galvanish (SGCC) dengan Baja Karbon Rendah (SPCC-SD). J. Rekayasa Energi dan Mek. 2024, 4, 36. [Google Scholar] [CrossRef]
- ASTM D2240-15 (2021); Standard Test Method for Rubber Property—Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2021.
- Palacios, P.A.; Velazquez, A.; Zelaya, R.; Patterson, A.E. Shore hardness of as-printed and dehydrated thermoplastic materials made using fused filament fabrication (FFF). Mater. Today Commun. 2023, 35, 105971. [Google Scholar]
- Ayyanar, C.B.; Marimuthu, K.; Helaili, S. Experimental evaluation and numerical comparisons of pine tree leaves, graphene oxide loaded, and E-glass fiber reinforced sandwich composites. Int. J. Polym. Anal. Charact. 2024, 29, 363–384. [Google Scholar] [CrossRef]
- Mohamed, S.B.; Anandhavasan, S.; Ahamed, S.B.; Ajayharish, R.; Barathraj, B.; Hariprakash, R.; Ravichandran, M.; Kaviarasu, C. Investigation on mechanical properties of hybrid polymer composites for automobile applications. Mater. Today Proc. 2023, 74, 73–79. [Google Scholar] [CrossRef]
- Gonçalves, N.I.; Pierre, F.Z.; Borges, A.L.S.; da Silva, J.M.F.; Uemura, E.S. Analyzing SHORE A hardness to assess the durability of soft denture lining materials. Braz. Dent. Sci. 2023, 26, e3986. [Google Scholar] [CrossRef]
- Binyamin, B.; Nurrokayati, A.S.; Prasetyo, B.B.; Rahman, S.F.; Febriantoko, B.W. Rekayasa Pembuatan Kampas Rem Berbahan Dasar Serbuk Tempurung Kelapa Bermatriks Phenolic Resin Terhadap Performa Gesek Pengereman. Traksi 2020, 19, 104–120. [Google Scholar]
Process Parameters | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Printing temperature (°C) | 220 | 230 | 240 |
Print speed (mm/s) | 70 | 80 | 90 |
Layer height (mm) | 0.15 | 0.2 | 0.25 |
Percobaan | Level | ||
---|---|---|---|
Printing Temperature (°C) | Print Speed (mm/s) | Layer Height (mm) | |
1 | 220 | 70 | 0.15 |
2 | 220 | 80 | 0.2 |
3 | 220 | 90 | 0.25 |
4 | 230 | 70 | 0.2 |
5 | 230 | 80 | 0.25 |
6 | 230 | 90 | 0.15 |
7 | 240 | 70 | 0.25 |
8 | 240 | 80 | 0.15 |
9 | 240 | 90 | 0.2 |
Sample | Tensile Strength (kgf/cm2) |
---|---|
1 | 251.06 |
2 | 259.86 |
3 | 282.06 |
4 | 287.18 |
5 | 291.20 |
6 | 282.92 |
7 | 292.59 |
8 | 303.49 |
9 | 329.02 |
Hardness T | ||||||
---|---|---|---|---|---|---|
Sample | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Average (HA) |
1 | 70.5 | 68.5 | 70 | 68.5 | 70.5 | 69.6 |
2 | 72 | 68 | 71.5 | 70 | 71 | 70.5 |
3 | 62.5 | 62 | 66 | 63 | 64 | 63.5 |
4 | 71.5 | 70 | 67 | 66 | 64.5 | 67.8 |
5 | 72.5 | 74 | 68.5 | 73 | 74 | 72,4 |
6 | 78 | 75 | 75 | 73.5 | 73 | 74.9 |
7 | 72.5 | 76.5 | 72.5 | 71 | 70 | 72.5 |
8 | 69 | 69.5 | 73.5 | 69.5 | 70.5 | 70.4 |
9 | 68.5 | 71.5 | 70.5 | 75 | 74.5 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albardawil, A.; Aditya, A.R.M.; Mubarok, M.Y.; Islami, L.A.; Mardiyana, D. Improving the Mechanical Performance of TPU95A Filament in FDM 3D Printing via Parameter Optimization Using the Taguchi Method. Eng. Proc. 2025, 107, 62. https://doi.org/10.3390/engproc2025107062
Albardawil A, Aditya ARM, Mubarok MY, Islami LA, Mardiyana D. Improving the Mechanical Performance of TPU95A Filament in FDM 3D Printing via Parameter Optimization Using the Taguchi Method. Engineering Proceedings. 2025; 107(1):62. https://doi.org/10.3390/engproc2025107062
Chicago/Turabian StyleAlbardawil, Abdelrahman, Aden Robby Muhamad Aditya, Muchammad Yusup Mubarok, Lazuardi Akmal Islami, and Dani Mardiyana. 2025. "Improving the Mechanical Performance of TPU95A Filament in FDM 3D Printing via Parameter Optimization Using the Taguchi Method" Engineering Proceedings 107, no. 1: 62. https://doi.org/10.3390/engproc2025107062
APA StyleAlbardawil, A., Aditya, A. R. M., Mubarok, M. Y., Islami, L. A., & Mardiyana, D. (2025). Improving the Mechanical Performance of TPU95A Filament in FDM 3D Printing via Parameter Optimization Using the Taguchi Method. Engineering Proceedings, 107(1), 62. https://doi.org/10.3390/engproc2025107062