FairCXRnet: A Multi-Task Learning Model for Domain Adaptation in Chest X-Ray Classification for Low Resource Settings †
Abstract
1. Introduction
2. Related Works
2.1. Domain Shift in Medical Imaging
2.2. Multi-Task Learning in Medical Imaging
2.3. Lightweight and Efficient Architectures
3. Methodology
3.1. Dataset Description
3.2. Proposed Multi-Task Learning Model
Algorithm 1 Attention-Guided Fusion + RBF–MMD |
Require:
|
3.3. Depthwise Separable Convolutions
- Depthwise Convolution: This operation independently applies a single filter to each input channel, reducing the computational cost.
- Pointwise Convolution: A 1 × 1 convolution is then applied to combine the outputs of the depthwise convolution.
3.4. Model Training Strategy
3.5. Implementation Details
4. Results
4.1. Experiment 1: Establishing Baselines
4.2. Investigation of Domain Shift Between ChestXray-14 and Nigerian Dataset
4.3. Proposed FairCXRnet Results
Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Musa, A.; Adam, F.M.; Ibrahim, U.; Zandam, A.Y. Learning from Small Datasets: An Efficient Deep Learning Model for Covid-19 Detection from Chest X-ray Using Dataset Distillation Technique. In Proceedings of the 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), Lagos, Nigeria, 5–7 April 2022; pp. 1–6. [Google Scholar]
- Musa, A.; Ibrahim Adamu, M.; Kakudi, H.A.; Hernandez, M.; Lawal, Y. Analyzing Cross-Population Domain Shift in Chest X-Ray Image Classification and Mitigating the Gap with Deep Supervised Domain Adaptation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2024; Linguraru, M.G., Dou, Q., Feragen, A., Giannarou, S., Glocker, B., Lekadir, K., Schnabel, J.A., Eds.; Springer: Cham, Switzerland, 2024; pp. 585–595. [Google Scholar]
- Wang, F.; Casalino, L.P.; Khullar, D. Deep learning in medicine—promise, progress, and challenges. JAMA Intern. Med. 2019, 179, 293–294. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wu, Z.; Xu, X.; Zhan, Y.; Jin, X.; Wang, L.; Qiu, Y. Opportunities and challenges of artificial intelligence in the medical field: Current application, emerging problems, and problem-solving strategies. J. Int. Med. Res. 2021, 49, 03000605211000157. [Google Scholar] [CrossRef] [PubMed]
- Pooch, E.H.; Ballester, P.; Barros, R.C. Can we trust deep learning based diagnosis? the impact of domain shift in chest radiograph classification. In Thoracic Image Analysis: Second International Workshop, TIA 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings 2; Springer: Berlin/Heidelberg, Germany, 2020; pp. 74–83. [Google Scholar]
- Hassan, M.; Hamada, M. Performance comparison of feed-forward neural networks trained with different learning algorithms for recommender systems. Computation 2017, 5, 40. [Google Scholar] [CrossRef]
- Alippi, C.; Disabato, S.; Roveri, M. Moving convolutional neural networks to embedded systems: The alexnet and VGG-16 case. In Proceedings of the 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Porto, Portugal, 11–13 April 2018; pp. 212–223. [Google Scholar]
- Salau, L.; Hamada, M.; Prasad, R.; Hassan, M.; Mahendran, A.; Watanobe, Y. State-of-the-art survey on deep learning-based recommender systems for e-learning. Appl. Sci. 2022, 12, 11996. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed]
- Kondrateva, E.; Pominova, M.; Popova, E.; Sharaev, M.; Bernstein, A.; Burnaev, E. Domain shift in computer vision models for MRI data analysis: An overview. In Proceedings of the Thirteenth International Conference on Machine Vision, Rome, Italy, 2–6 November 2020; pp. 126–133. [Google Scholar]
- Li, H.; Wang, Y.; Wan, R.; Wang, S.; Li, T.Q.; Kot, A. Domain generalization for medical imaging classification with linear-dependency regularization. Adv. Neural Inf. Process. Syst. 2020, 33, 3118–3129. [Google Scholar]
- Gulrajani, I.; Lopez-Paz, D. In search of lost domain generalization. arXiv 2020, arXiv:2007.01434. [Google Scholar]
- Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 1180–1189. [Google Scholar]
- Motiian, S.; Piccirilli, M.; Adjeroh, D.A.; Doretto, G. Unified deep supervised domain adaptation and generalization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5715–5725. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7167–7176. [Google Scholar]
- Xu, M.; Zhang, J.; Ni, B.; Li, T.; Wang, C.; Tian, Q.; Zhang, W. Adversarial domain adaptation with domain mixup. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 6502–6509. [Google Scholar]
- Kouw, W.M.; Loog, M. An introduction to domain adaptation and transfer learning. arXiv 2018, arXiv:1812.11806. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Rajpurkar, P. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv 2017, arXiv:1711.05225. [Google Scholar]
- Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.; Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpanskaya, K.; et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 590–597. [Google Scholar]
- Zhang, Y.; Yang, Q. An overview of multi-task learning. Natl. Sci. Rev. 2018, 5, 30–43. [Google Scholar] [CrossRef]
- Zhang, W.; Li, R.; Zeng, T.; Sun, Q.; Kumar, S.; Ye, J.; Ji, S. Deep model based transfer and multi-task learning for biological image analysis. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 1475–1484. [Google Scholar]
- Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Li, G.; Zhou, W.; Chen, W.; Sun, F.; Fu, Y.; Gong, F.; Zhang, H. Study on the detection of pulmonary nodules in CT images based on deep learning. IEEE Access 2020, 8, 67300–67309. [Google Scholar] [CrossRef]
- Bao, G.; Chen, H.; Liu, T.; Gong, G.; Yin, Y.; Wang, L.; Wang, X. COVID-MTL: Multitask learning with Shift3D and random-weighted loss for COVID-19 diagnosis and severity assessment. Pattern Recognit. 2022, 124, 108499. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Hamada, M. Burrows–wheeler transform based lossless text compression using keys and Huffman coding. Symmetry 2020, 12, 1654. [Google Scholar] [CrossRef]
- Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Xie, G.; Wang, J.; Zhang, T.; Lai, J.; Hong, R.; Qi, G.J. Interleaved structured sparse convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8847–8856. [Google Scholar]
- Li, Y.; Esteva, A.; Kuprel, B.; Novoa, R.; Ko, J.; Thrun, S. Skin cancer detection and tracking using data synthesis and deep learning. In Proceedings of the Workshops at the Thirty-first AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Sanchez, K.; Hinojosa, C.; Arguello, H.; Kouamé, D.; Meyrignac, O.; Basarab, A. CX-DaGAN: Domain adaptation for pneumonia diagnosis on a small chest X-ray dataset. IEEE Trans. Med. Imaging 2022, 41, 3278–3288. [Google Scholar] [CrossRef] [PubMed]
- Lenga, M.; Schulz, H.; Saalbach, A. Continual learning for domain adaptation in chest x-ray classification. In Proceedings of the Medical Imaging with Deep Learning, PMLR, Montreal, QC, Canada, 6–8 July 2020; pp. 413–423. [Google Scholar]
Datasets | Accuracy | Precision | Recall | F1-Score | AUC |
---|---|---|---|---|---|
ChestXray14 | 96.10 | 86.73 | 83.33 | 96.00 | 0.95 |
Nigerian-CXR | 91.33 | 91.69 | 91.33 | 91.32 | 0.98 |
Datasets | Accuracy | Precision | Recall | F1-Score | AUC |
---|---|---|---|---|---|
ChestXray14 –>Nigerian CXR | 61.58 | 51.16 | 50.03 | 59.87 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musa, A.; Prasad, R.; Hassan, M.; Hamada, M.; Ilu, S.Y. FairCXRnet: A Multi-Task Learning Model for Domain Adaptation in Chest X-Ray Classification for Low Resource Settings. Eng. Proc. 2025, 107, 16. https://doi.org/10.3390/engproc2025107016
Musa A, Prasad R, Hassan M, Hamada M, Ilu SY. FairCXRnet: A Multi-Task Learning Model for Domain Adaptation in Chest X-Ray Classification for Low Resource Settings. Engineering Proceedings. 2025; 107(1):16. https://doi.org/10.3390/engproc2025107016
Chicago/Turabian StyleMusa, Aminu, Rajesh Prasad, Mohammed Hassan, Mohamed Hamada, and Saratu Yusuf Ilu. 2025. "FairCXRnet: A Multi-Task Learning Model for Domain Adaptation in Chest X-Ray Classification for Low Resource Settings" Engineering Proceedings 107, no. 1: 16. https://doi.org/10.3390/engproc2025107016
APA StyleMusa, A., Prasad, R., Hassan, M., Hamada, M., & Ilu, S. Y. (2025). FairCXRnet: A Multi-Task Learning Model for Domain Adaptation in Chest X-Ray Classification for Low Resource Settings. Engineering Proceedings, 107(1), 16. https://doi.org/10.3390/engproc2025107016