Predictive Analysis of Chronic Kidney Disease in Machine Learning †
Abstract
1. Introduction
2. Proposed Methodology
2.1. Algorithms
2.1.1. K-Nearest Neighbors
2.1.2. Decision Tree
2.1.3. Logistic Regression
2.1.4. Vote Ensemble
2.1.5. Dataset Description
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dritsas, E.; Trigka, M. Machine learning techniques for chronic kidney disease risk prediction. Big Data Cogn. Comput. 2022, 6, 98. [Google Scholar] [CrossRef]
- Ghosh, P.; Shamrat, F.J.M.; Shultana, S.; Afrin, S.; Anjum, A.A.; Khan, A.A. Optimization of prediction method of chronic kidney disease using machine learning algorithm. In Proceedings of the 2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP), Bangkok, Thailand, 18–20 November 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Nishat, M.M.; Faisal, F.; Dip, R.R.; Nasrullah, S.M.; Ahsan, R.; Shikder, F.; Asif, M.A.; Hoque, M.A. A Comprehensive Analysis on Detecting Chronic Kidney Disease Using Machine Learning. EAI Endorsed Trans. Pervasive Health Technol. 2021, 7, 15. [Google Scholar] [CrossRef]
- Islam, M.A.; Majumder, M.Z.H.; Hussein, M.A. Chronic Kidney Disease Prediction Based on Machine Learning Algorithms. J. Pathol. Inform. 2023, 8, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Koli, N.; Mahor, N.; Tejashri, N. Performance analysis of machine learning classifier for predicting chronic kidney disease. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 1–4. [Google Scholar]
- Emon, M.U.; Islam, R.; Keya, M.S.; Zannat, R. Performance analysis of chronic kidney disease through machine learning approaches. In Proceedings of the 2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 January 2021; pp. 713–719. [Google Scholar]
- Arif, M.S.; Mukheimer, A.; Asif, D. Enhancing the early detection of chronic kidney disease: A robust machine learning model. Big Data Cogn. Comput. 2023, 7, 144. [Google Scholar] [CrossRef]
- Mondol, C.; Shamrat, F.J.M.; Hasan, M.R.; Alam, S.; Ghosh, P.; Tasnim, Z.; Ahmed, K.; Bui, M.F.; Ibrahim, S.M. Early prediction of chronic kidney disease: A comprehensive performance analysis of deep learning models. Algorithms 2022, 15, 308. [Google Scholar] [CrossRef]
- Swain, K.P.; Nayak, R.K.; Swain, A.; Nayak, S.R. The Impact of Machine Learning on Chronic Kidney Disease: Analysis and Insights. In Healthcare Industry Assessment: Analyzing Risks, Security, and Reliability; Springer Nature: Berlin, Germany, 2024; pp. 121–148. [Google Scholar]
- Vupputuri, S.; Sandler, D.P. Lifestyle risk factors and chronic kidney disease. Ann. Epidemiol. 2003, 13, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Khalid, F.; Alsadoun, L.; Khilji, F.; Mushtaq, M.; Eze-Odurukwe, A.; Mushtaq, M.M.; Ali, H.; Farman, O.R.; Ali, M.S.; Fatima, R.; et al. Predicting the progression of chronic kidney disease: A systematic review of artificial intelligence and machine learning approaches. Cureus 2024, 16, e60145. [Google Scholar] [CrossRef] [PubMed]
- Delrue, C.; De Bruyne, S.; Speeckaert, M.M. Application of machine learning in chronic kidney disease: Current status and future prospects. Biomedicines 2024, 12, 568. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Sikder, R.; Islam, M.R.; Al Mukaddim, A.; Hider, M.A.; Nasiruddin, M. Comparing the Effectiveness of Machine Learning Algorithms in Early Chronic Kidney Disease Detection. J. Comput. Sci. Technol. Stud. 2024, 6, 77–91. [Google Scholar] [CrossRef]
- Arora, A.; Sehgal, C.; Agarwal, N. An analysis of machine learning algorithms for chronic kidney disease prediction. In Proceedings of the 2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 18–19 January 2024; pp. 581–586. [Google Scholar]
- Rahat, M.A.R.; Islam, M.T.; Cao, D.M.; Tayaba, M.; Ghosh, B.P.; Ayon, E.H.; Nob, N.; Akter, A.; Rahman, M.; Bhuiyan, M.S. Comparing machine learning techniques for detecting chronic kidney disease in early stage. J. Comput. Sci. Technol. Stud. 2024, 6, 20–32. [Google Scholar] [CrossRef]
- Diwaker, C.; Tomar, P.; Solanki, A.; Nayyar, A.; Jhanjhi, N.Z.; Abdullah, A.; Supramaniam, M. A New Model for Predicting Component- Based Software Reliability Using Soft Computing. IEEE Access 2019, 7, 147191–147203. [Google Scholar] [CrossRef]
- Kok, S.H.; Abdullah, A.; Jhanjhi, N.Z.; Supramaniam, M. A review of intrusion detection system using machine learning approach. Int. J. Eng. Res. Technol. 2019, 12, 8–15. [Google Scholar]
- Faisal, A.; Jhanjhi, N.Z.; Ashraf, H.; Ray, S.K.; Ashfaq, F. A Comprehensive Review of Machine Learning Models: Principles, Applications, and Optimal Model Selection. Authorea Prepr. 2025. Available online: https://www.techrxiv.org/users/662346/articles/1279092-a-comprehensive-review-of-machine-learning-models-principles-applications-and-optimal-model-selection?commit=49746fcb1a7a00742ebbbf9daf367aba3c9cf1b3 (accessed on 2 February 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, H.A.; Hussain, M.; Kharisma, I.L. Predictive Analysis of Chronic Kidney Disease in Machine Learning. Eng. Proc. 2025, 107, 118. https://doi.org/10.3390/engproc2025107118
Haider HA, Hussain M, Kharisma IL. Predictive Analysis of Chronic Kidney Disease in Machine Learning. Engineering Proceedings. 2025; 107(1):118. https://doi.org/10.3390/engproc2025107118
Chicago/Turabian StyleHaider, Husnain Ali, Manzoor Hussain, and Ivana Lucia Kharisma. 2025. "Predictive Analysis of Chronic Kidney Disease in Machine Learning" Engineering Proceedings 107, no. 1: 118. https://doi.org/10.3390/engproc2025107118
APA StyleHaider, H. A., Hussain, M., & Kharisma, I. L. (2025). Predictive Analysis of Chronic Kidney Disease in Machine Learning. Engineering Proceedings, 107(1), 118. https://doi.org/10.3390/engproc2025107118