Design and Analysis of Cattle Slaughtering Aid Frame with Three Load Variations Using Finite Element Method (FEA) †
Abstract
1. Introduction
2. Methods
2.1. Model Design
2.2. Load and Material Variation Analysis
2.3. Finite Element Method Analysis (FEA)
- Import the cow cutter model file in IGES (.igs) format.
- Select the type of static structural analysis in the toolbox.
- Drag the geometry of the model on static structural geometry.
- Select the material types in Engineering Data.
- Determine the placement of support on the structure, as shown in Figure 2 below.
3. Results and Discussion
3.1. Light Load 500 kg/4905 N
3.2. Medium Load 1000 kg/9810 N
3.3. Heavy Load 1500 kg/14,715 N
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hultgren, J.; Schiffer, K.J.; Babol, J.; Berg, C. Animal Welfare and Food Safety When Slaughtering Cattle Using the Gunshot Method. Animals 2022, 12, 492. [Google Scholar] [CrossRef] [PubMed]
- Bicudo, J.R.; McNeill, S.G.; Turner, L.W.; Burris, R.; Anderson, J. Cattle Handling Facilities: Planning, Components, and Layouts. 2002. Available online: https://uknowledge.uky.edu/aen_reports/13/ (accessed on 30 July 2025).
- Patil, S.S.; Bhangale, J.H. Reducing Cattle Stress During Transport: Structural Design And Analysis Of A Ramp-Gate System. Int. J. Environ. Sci. 2025, 11, 865–876. [Google Scholar] [CrossRef]
- Lim, R.-G.; Kim, W.-S.; Do, Y.-W.; Siddique, M.A.A.; Kim, Y.-J. Performance Evaluation of a Virtual Test Model of the Frame-Type ROPS for Agricultural Tractors Using FEA. Agriculture 2023, 13, 2004. [Google Scholar] [CrossRef]
- Biggerstaff, J.M.; Haar, W.R.; Kilker, M.S.; Miller, T.F. Design of a Manual Cattle Chute; Custom Agricultural Solutions: Cowley, WY, USA, 2006. [Google Scholar]
- Cheng, L.; Lin, H.-B.; Zhang, Y.-L.; Rodríguez, A.R. Optimization design and analysis of mobile pump truck frame using response surface methodology. PLoS ONE 2023, 18, e0290348. [Google Scholar] [CrossRef] [PubMed]
- Panjono; Triyannanto, E.; Sri nugroho, W.; Eko Yulianto, M.d.; Atmoko, B.A. Improving Slaughtering Efficiency and Sacrificial Cattle’s Welfare Through the Use of Portable Restraining Box. AAVS 2022, 10, 763–770. [Google Scholar]
- Pratt, M.J. Virtual Prototypes and Product Models in Mechanical Engineering. In Virtual Prototyping: IFIP Advances in Information and Communication Technology; Rix, J., Haas, S., Teixeira, J., Eds.; Springer: Boston, MA, USA, 1995. [Google Scholar]
- Pratama, J.; Mahardika, M. Finite element analysis to determine the stress distribution, displacement and safety factor on a microplate for the fractured jaw case. In AIP Conference Proceedings, Proceedings of the 6th International Conference on Education, Concept, and Application of Green Technology (EIC 2017), Semarang, Indonesia, 11 October 2017; AIP Pbulishing: Melville, NY, USA, 2018; p. 020022. [Google Scholar]
- Liu, Y.; Liu, C.; Gao, X.; Tan, J. Multiphysics Finite Element Analysis and Optimization of Load-Bearing Frame for Pure Electric SUVs. Symmetry 2025, 17, 1143. [Google Scholar] [CrossRef]
- Lücking, A.; Louton, H.; von Wenzlawowicz, M.; Erhard, M.; von Holleben, K. Movements after Captive Bolt Stunning in Cattle and Possible Animal- and Process-Related Impact Factors—A Field Study. Animals 2024, 14, 1112. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Cao, S.; Li, S.; Bai, T.; Zhao, Z.; Sun, W. Automated Measurement of Cattle Dimensions Using Improved Keypoint Detection Combined with Unilateral Depth Imaging. Animals 2024, 14, 2453. [Google Scholar] [CrossRef] [PubMed]
- Gomathi, R.; Rajeeva, S.J.; Sharada, S.A.; Narayana, G. Design, Planning, Scheduling and Resource Allocation for Slaughter House. IJEAT 2017, 6, 242–246. [Google Scholar]
- Troxel, T.R.; Gadberry, S. Cattle Working Facilities; University of Arkansas Cooperative Extension Serivce: Little Rock, AR, USA, 2015. [Google Scholar]
- Schipp, M. An assessment of the ongoing appropriateness of Mark I and IV restraint boxes. 2011. Available online: https://www.dcceew.gov.au/sites/default/files/documents/assessment-restraint-boxes.pdf (accessed on 30 July 2025).
- Carrijo, S.M.; Duarte, F.A.M. Description and comparison of growth parameters in Chianina and Nelore cattle breeds. Genet. Mol. Biol. 1999, 22, 187–196. [Google Scholar] [CrossRef][Green Version]
- Sofias, K.; Kanetaki, Z.; Stergiou, C.; Kantaros, A.; Jacques, S.; Ganetsos, T. Implementing CAD API Automated Processes in Engineering Design: A Case Study Approach. Appl. Sci. 2025, 15, 7692. [Google Scholar] [CrossRef]
- Bosire, R.N.; Muvengei, O.M.; Mutua, J.M.; Kimotho, J.K. Development of a finite element model for prediction of cutting forces in turning of AISI 1040. J. Sustain. Res. Eng. 2024, 8, 85–102. [Google Scholar]
- Sahin, M.; Akata, H.E.; Gulmez, T. Characterization of mechanical properties in AISI 1040 parts welded by friction welding. Mater. Charact. 2007, 58, 1033–1038. [Google Scholar] [CrossRef]
- Gurumurthy, B.; Gowrishankar, M.; Sharma, S.; Kini, A.; Shettar, M.; Hiremath, P. Microstructure authentication on mechanical property of medium carbon Low alloy duplex steels. J. Mater. Res. Technol. 2020, 9, 5105–5111. [Google Scholar] [CrossRef]
- Ruviana, R.; Izzah, A.N.; Firdaus, M.R.; Darmawan, S.T.; Nugroho, K.F.; Illaahiyah, W.; Pratama, I.Y. Finite Element Analysis of Static Failure in a Tempered and Hardened 1040 Steel Shaft. BIOMEJ 2025, 5, 11–21. [Google Scholar]
- Çoban, O. Heat treatment of AISI 1040 and AISI 4140 steels: Microstructure-mechanical property relationships for normalization, spheroidization and quenching-tempering. J. Innovative Eng. Nat. Sci. 2025, 5, 556–567. [Google Scholar] [CrossRef]
Element | Fill |
---|---|
Iron, Fe | 98.6–99 |
Manganese, Mn | 0.6–0.9 |
Carbon, C | 0.37–0.44 |
Sulfur, S | 0.05 |
Phosphorus, P | 0.04 |
Property | Metric |
---|---|
Tensile strength | 620 MPa |
Modulus of elasticity | 200 GPa |
Yield strength | 350 MPa |
Density | |
Hardness | 149–170 HB (Brinell Hardness) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurniawan, A.; Ruslan, D.R.; Kusnadi, R.; Mardiyana, D. Design and Analysis of Cattle Slaughtering Aid Frame with Three Load Variations Using Finite Element Method (FEA). Eng. Proc. 2025, 107, 107. https://doi.org/10.3390/engproc2025107107
Kurniawan A, Ruslan DR, Kusnadi R, Mardiyana D. Design and Analysis of Cattle Slaughtering Aid Frame with Three Load Variations Using Finite Element Method (FEA). Engineering Proceedings. 2025; 107(1):107. https://doi.org/10.3390/engproc2025107107
Chicago/Turabian StyleKurniawan, Asep, Dikha Resnandan Ruslan, Renaldi Kusnadi, and Dani Mardiyana. 2025. "Design and Analysis of Cattle Slaughtering Aid Frame with Three Load Variations Using Finite Element Method (FEA)" Engineering Proceedings 107, no. 1: 107. https://doi.org/10.3390/engproc2025107107
APA StyleKurniawan, A., Ruslan, D. R., Kusnadi, R., & Mardiyana, D. (2025). Design and Analysis of Cattle Slaughtering Aid Frame with Three Load Variations Using Finite Element Method (FEA). Engineering Proceedings, 107(1), 107. https://doi.org/10.3390/engproc2025107107