Advancements in Optical Biosensor Technology for Food Safety and Quality Assurance †
Abstract
1. Introduction
Molecular and Biochemical Mechanisms of Optical Biosensors
2. Types of Optical Biosensors and Their Applications in the Food Industry
3. Optical Biosensors in Pathogen Detection for Food Safety
4. Optical Biosensors in Toxin Detection for Food Safety
5. Optical Biosensors in Monitoring Pesticide and Antibiotic Residues for Food Safety
6. Integration of Machine Learning and Artificial Intelligence in Optical Biosensor Technology for Food Safety
6.1. Integration of Artificial Intelligence
6.2. Integration of Machine Learning in Optical Biosensor Technology for Food Safety
7. Challenges of Optical Biosensors in Food Safety Monitoring
8. Current Status and Challenges of Standardizing Optical Biosensor Methods for Food Safety Control
8.1. Current Status
8.2. Challenges
8.3. Regulatory Considerations
9. Future Directions of Optical Biosensors in Food Safety and Potential Impact
9.1. Future Directions
9.2. Potential Impact
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anish Kumar, M.; Jung, S.; Ji, T. Protein biosensors based on polymer nanowires, carbon nanotubes and zinc oxide nanorods. Sensors 2011, 11, 5087–5111. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P.P.; Maity, S. Optical biosensors: Principles, techniques, sensor design and their application in food analysis. In Biosensors in Food Safety and Quality: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2022; pp. 23–36. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, K.; Lin, J. Optical biosensors for the detection of foodborne pathogens: Recent development and future prospects. TrAC Trends Anal. Chem. 2024, 177, 117785. [Google Scholar] [CrossRef]
- Balbinot, S.; Srivastav, A.M.; Vidic, J.; Abdulhalim, I.; Manzano, M. Plasmonic biosensors for food control. Trends Food Sci. Technol. 2021, 111, 128–140. [Google Scholar] [CrossRef]
- Raptis, I.; Misiakos, K.; Makarona, E.; Salapatas, A.; Petrou, P.; Kakabakos, S.; Botsialas, A.; Jobst, G.; Haasnoot, W.; Fernandez-Alba, A.; et al. A miniaturized optoelectronic system for rapid quantitative label-free detection of harmful species in food. In Proceedings of the Progress in Biomedical Optics and Imaging—Proceedings of SPIE, San Francisco, CA, USA, 13–14 February 2016; Volume 9725, p. 97250A. [Google Scholar] [CrossRef]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-free optical biosensors for food and biological sensor applications. Sens. Actuators B Chem. 2018, 265, 35–49. [Google Scholar] [CrossRef]
- Narsaiah, K.; Jha, S.N.; Bhardwaj, R.; Sharma, R.; Kumar, R. Optical biosensors for food quality and safety assurance—A review. J. Food Sci. Technol. 2012, 49, 383–406. [Google Scholar] [CrossRef]
- Huang, J.; Qin, Y.; Tang, S.; Kong, D.; Liu, C. Construction and application in food contaminants detection of novel optical fiber biosensors. Prog. Chem. 2024, 36, 120–131. [Google Scholar] [CrossRef]
- Bhand, S.; Kanungo, L.; Pal, S. Chapter 7: Chemiluminescence and fluorescence optical biosensor for the detection of aflatoxins in food. In Food Chemistry, Function and Analysis; Royal Society of Chemistry: London, UK, 2017; Volume 2017, pp. 161–181. [Google Scholar] [CrossRef]
- Zheng, L.; Jin, W.; Xiong, K.; Zhen, H.; Li, M.; Hu, Y. Nanomaterial-based biosensors for the detection of foodborne bacteria: A review. Analyst 2023, 148, 5790–5804. [Google Scholar] [CrossRef]
- Angelopoulou, M.; Petrou, P.; Kakabakos, S. Advances in interferometric sensors for the detection of food contaminants. TrAC Trends Anal. Chem. 2024, 175, 117714. [Google Scholar] [CrossRef]
- Moran, K.L.M.; Fitzgerald, J.; McPartlin, D.A.; Loftus, J.H.; O’Kennedy, R. Biosensor-based technologies for the detection of pathogens and toxins. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 93–120. [Google Scholar] [CrossRef]
- Nath, S. Advancements in food quality monitoring: Integrating biosensors for precision detection. Sustain. Food Technol. 2024, 2, 976–992. [Google Scholar] [CrossRef]
- Caratelli, V.; Di Meo, E.; Colozza, N.; Fabiani, L.; Fiore, L.; Moscone, D.; Arduini, F. Nanomaterials and paper-based electrochemical devices: Merging strategies for fostering sustainable detection of biomarkers. J. Mater. Chem. B 2022, 10, 9021–9039. [Google Scholar] [CrossRef]
- Sagar Shrikrishna, N.; Sharma, R.; Sahoo, J.; Kaushik, A.; Gandhi, S. Navigating the landscape of optical biosensors. Chem. Eng. J. 2024, 490, 151661. [Google Scholar] [CrossRef]
- Lugongolo, M.Y.; Ombinda-Lemboumba, S.; Mthunzi-Kufa, P. Optical biosensing of human immunodeficiency virus on a gold coated surface. In Proceedings of the Progress in Biomedical Optics and Imaging—Proceedings of SPIE, San Francisco, CA, USA, 28 January–2 February 2023; Volume 12396, p. 123960B. [Google Scholar] [CrossRef]
- Maphanga, C.; Manoto, S.; Ombinda-Lemboumba, S.; Hlekelele, L.; Mthunzi-Kufa, P. Optical biosensing of mycobacterium tuberculosis for point-of-care diagnosis. In Proceedings of the Progress in Biomedical Optics and Imaging—Proceedings of SPIE, San Francisco, CA, USA, 1–6 February 2020; Volume 11251, p. 112510R. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, X.; Zhang, Y.; Gu, C.; Song, B.; Shi, H. Kinetic analysis of a high-affinity antibody/antigen interaction performed by planar waveguide fluorescence immunosensor. RSC Adv. 2016, 6, 13837–13845. [Google Scholar] [CrossRef]
- Palchetti, I.; Mascini, M. Biosensor technology: A brief history. In Sensors and Microsystems; Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands, 2010; Volume 54, pp. 15–23. [Google Scholar] [CrossRef]
- De Marcos, S.; Sanz, V.; Andreu, Y.; Galbán, J. Comparative study of polymeric supports as the base of immobilisation of chemically modified enzymes. Microchim. Acta 2006, 153, 163–170. [Google Scholar] [CrossRef]
- Bertucci, C.; Piccoli, A.; Pistolozzi, M. Optical biosensors as a tool for early determination of absorption and distribution parameters of lead candidates and drugs. Comb. Chem. High Throughput Screen. 2007, 10, 433–440. [Google Scholar] [CrossRef]
- Bosch, M.E.; Sánchez, A.J.R.; Rojas, F.S.; Ojeda, C.B. Optical chemical biosensors for high throughput screening of drugs. Comb. Chem. High Throughput Screen. 2007, 10, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Kumar, S.; Nedoma, J.; Martinek, R.; Marques, C. Advancements in optical biosensing techniques: From fundamentals to future prospects. APL Photonics 2024, 9, 091102. [Google Scholar] [CrossRef]
- Zamarreño, C.R.; Socorro, A.B.; Sanchez, P.; Matias, I.R.; Arregui, F.J. Optical fibers: Biosensors. In Encyclopedia of Optical and Photonic Engineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 2034–2052. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Ying, Y.; Li, Y. Recent advances in biosensors for food safety detection. NongyeGongchengXuebao/Trans. Chin. Soc. Agric. Eng. 2007, 23, 272–277. [Google Scholar]
- Singh, P.; Pandey, V.K.; Srivastava, S.; Singh, R. A systematic review on recent trends and perspectives of biosensors in food industries. J. Food Saf. 2023, 43, e13071. [Google Scholar] [CrossRef]
- Rasooly, A.; Herold, K.E. Biosensors for the analysis of food- and waterborne pathogens and their toxins. J. AOAC Int. 2006, 89, 873–883. [Google Scholar] [CrossRef]
- Terry, L.A.; White, S.F.; Tigwell, L.J. The application of biosensors to fresh produce and the wider food industry. J. Agric. Food Chem. 2005, 53, 1309–1316. [Google Scholar] [CrossRef]
- Varzakas, T.; Nikoleli, G.-P.; Tzamtzis, N.; Nikolelis, D.P. Optical biosensors in food safety and control. In Portable Biosensing of Food Toxicants and Environmental Pollutants; CRC Press: Boca Raton, FL, USA, 2013; pp. 473–485. [Google Scholar] [CrossRef]
- Sehgal, S.; Aggarwal, S.; Saini, A.; Thakur, M.; Soni, K. Smart monitoring and surveillance of food contamination. In Smart and Sustainable Food Technologies; Springer: Singapore, 2022; pp. 263–285. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, X.; Zhu, Y.; Wan, J.; Wang, X.; Zhou, X.; Li, X.; Zhou, W. Research progress on multiplexed pathogen detection using optical biosensors. Biosensors 2025, 15, 378. [Google Scholar] [CrossRef]
- Choudari, S.; Subha, L.; Rashmi, N.; Chandrakar, M.K.; Pradeeshkumar, T.; Singh, A.; Yadav, H.S. Optical biosensors for rapid detection of foodborne pathogens in agricultural products. J. Appl. Bioanal. 2024, 10, 33–38. [Google Scholar]
- Oushyani Roudsari, Z.; Karami, Y.; Khoramrooz, S.S.; Rouhi, S.; Ghasem, H.; Khatami, S.H.; Alizadeh, M.; Ahmad Khosravi, N.; Mansoriyan, A.; Ghasemi, E.; et al. Electrochemical and optical biosensors for the detection of E. coli. Clin. Chim. Acta 2025, 565, 119984. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Zhao, J.; Zhang, Y.; Huang, W.; Xu, S.; Chen, H.; Fan, L.-M.; Chen, Y.; Deng, X.W. Rapid and reliable detection of 11 food-borne pathogens using thin-film biosensor chips. Appl. Microbiol. Biotechnol. 2010, 86, 983–990. [Google Scholar] [CrossRef]
- Habimana, J.D.D.; Ji, J.; Sun, X. Minireview: Trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics. Anal. Lett. 2018, 51, 2933–2966. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Y.; Lin, J.; Liu, Y. Biosensors coupled with signal amplification technology for the detection of pathogenic bacteria: A review. Biosensors 2021, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Sekhwama, M.; Mpofu, K.; Sivarasu, S.; Mthunzi-Kufa, P. Enhancing limit of detection in surface plasmon resonance biosensors: A sensitivity analysis for optimal performance. In Proceedings of the Progress in Biomedical Optics and Imaging—Proceedings of SPIE, San Francisco, CA, USA, 27–28 January 2024; Volume 12840, p. 128400C. [Google Scholar] [CrossRef]
- Uniyal, A.; Gotam, S.; Ram, T.; Chauhan, B.; Jha, A.; Pal, A. Next generation ultra-sensitive surface plasmon resonance biosensors. In Communications in Computer and Information Science, Proceedings of the International Conference on Machine Learning, Image Processing, Network Security and Data Sciences, Bhopal, India, 21–22 December 2022; Springer: Cham, Switzerland, 2023; Volume 1762, pp. 353–361. [Google Scholar] [CrossRef]
- Granqvist, N.; Hanning, A.; Eng, L.; Tuppurainen, J.; Viitala, T. Label-enhanced surface plasmon resonance: A new concept for improved performance in optical biosensor analysis. Sensors 2013, 13, 15348–15363. [Google Scholar] [CrossRef]
- Daghestani, H.N.; Day, B.W. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors 2010, 10, 9630–9646. [Google Scholar] [CrossRef]
- Calò, G.; Farinola, A.; Petruzzelli, V. Design and optimization of high sensitivity photonic interferometric biosensors on polymeric waveguides. Prog. Electromagn. Res. Lett. 2012, 33, 151–166. [Google Scholar] [CrossRef]
- Eksin, E.; Erdem, A. Recent progress on optical biosensors developed for nucleic acid detection related to infectious viral diseases. Micromachines 2023, 14, 295. [Google Scholar] [CrossRef]
- Lyshyk, N.F.; Tarodub, N.F. Comparison of the efficiency control of mycotoxins by some optical immune biosensors. In Proceedings of the Progress in Biomedical Optics and Imaging—Proceedings of SPIE, Riga, Latvia, 26–31 August 2013; Volume 9032, p. 903210. [Google Scholar] [CrossRef]
- Moreira, C.S.; Oliveira, L.C.; Fischer, R.; Medeiros, E.S.; Lima, A.M.N.; Neff, H. Polymer-based surface plasmon resonance biochip: Construction and experimental aspects. Res. Biomed. Eng. 2016, 32, 92–103. [Google Scholar] [CrossRef]
- Yi, Z.; Ren, Y.; Li, Y.; Li, Y.; Long, F.; Zhu, A. Optical biosensors for microbial toxin detection: Recent advances and future trends. Microchem. J. 2023, 191, 108894. [Google Scholar] [CrossRef]
- Urs, D.; Madesh, A.; Mahmood, K.; Sreeharsha, N.; Dharmappa, K.K. Real-time utilization of nanostructured biosensors for the determination of food toxins. In Novel Nanostructured Materials for Electrochemical Bio-Sensing Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 367–378. [Google Scholar] [CrossRef]
- Akbari-Alavijeh, S.; Shaddel, R.; Lee, C.-C.; Pourjafar, H.; Ansari, F.; Alizadeh Sani, M.; Ajili, N.; Assadpour, E.; Zhang, F.; Jafari, S.M. Nano-immunosensors for the rapid and sensitive detection of foodborne toxins; Recent advances. Ind. Crops Prod. 2025, 228, 120879. [Google Scholar] [CrossRef]
- Ravindran, N.; Kumar, S.; M, Y.; S, R.; C A, M.; Thirunavookarasu, S.N.; C K, S. Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 1055–1077. [Google Scholar] [CrossRef]
- Tang, X.; Zuo, J.; Yang, C.; Jiang, J.; Zhang, Q.; Ping, J.; Li, P. Current trends in biosensors for biotoxins (mycotoxins, marine toxins, and bacterial food toxins): Principles, application, and perspective. TrAC Trends Anal. Chem. 2023, 165, 117144. [Google Scholar] [CrossRef]
- Sharma, H.; Mutharasan, R. Review of biosensors for foodborne pathogens and toxins. Sens. Actuators B Chem. 2013, 183, 535–549. [Google Scholar] [CrossRef]
- Yang, M.; Sapsford, K.E.; Sergeev, N.; Sun, S.; Rasooly, A. Meeting current public health needs: Optical biosensors for pathogen detection and analysis. In Proceedings of the Progress in Biomedical Optics and Imaging—Proceedings of SPIE, San Jose, CA, USA, 24–29 January 2009; Volume 7167, p. 716702. [Google Scholar] [CrossRef]
- Petz, M. Recent applications of surface plasmon resonance biosensors for analyzing residues and contaminants in food. Monatshefte Chem. 2009, 140, 953–964. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, H.; Liu, G. Advances in biosensor-based instruments for pesticide residues rapid detection. Int. J. Electrochem. Sci. 2015, 10, 9790–9807. [Google Scholar] [CrossRef]
- Utegenova, A.; Kakimova, Z.; Klivenko, A.; Kapshakbayeva, Z.; Imankulova, G.; Naurzbaeva, G.; Tulkebayeva, G.; Mirasheva, G. Acetylcholinesterase immobilized on glass rod for organophosphorus pesticides detection: Application on milk analysis. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 843–848. [Google Scholar] [CrossRef]
- Zheng, J.; Lian, Z.; Liu, T.; Ouyang, M.; Jiang, S.; Yuan, X.; Zhou, L. A review for carbon dots-based fluorescent sensing tools for antibiotic and pesticide residues: Progress, challenge and perspective. Food Control 2025, 172, 111201. [Google Scholar] [CrossRef]
- Ma, J.; Lu, B.; Zhang, P.; Li, D.; Xu, K. Liquid transfer of graphene to the cylindrical gold nanostructures for sensitivity enhancements of SPR glucose sensor. Sens. Actuators A Phys. 2023, 353, 114227. [Google Scholar] [CrossRef]
- Qin, J.; Guo, N.; Yang, J.; Wei, J. Recent advances in metal oxide nanozyme-based optical biosensors for food safety assays. Food Chem. 2024, 447, 139019. [Google Scholar] [CrossRef]
- Hassan, M.M.; Xu, Y.; Sayada, J.; Zareef, M.; Shoaib, M.; Chen, X.; Li, H.; Chen, Q. Progress of machine learning-based biosensors for the monitoring of food safety: A review. Biosens. Bioelectron. 2025, 267, 116782. [Google Scholar] [CrossRef]
- Lin, H. Artificial intelligence with great potential in medical informatics: A brief review. Medinformatics 2024, 1, 2–9. [Google Scholar] [CrossRef]
- Chowdhury, S.H.; Mamun, M.; Shaikat, M.T.A.; Hussain, M.I.; Iqbal, M.S.; Hossain, M.M. An ensemble approach for artificial neural network-based liver disease identification from optimal features through hybrid modeling integrated with advanced explainable AI. Medinformatics 2025, 2, 107–119. [Google Scholar] [CrossRef]
- Pandhi, S.; Kumari, N.; Jain, A.; Sharma, V. Emerging technologies in food safety: AI-powered, nano-enabled, and biosensor-based strategies for rapid contaminant detection. Food Anal. Methods 2025, 18, 2010–2024. [Google Scholar] [CrossRef]
- Deng, Z.; Yun, Y.-H.; Duan, N.; Wu, S. Artificial intelligence algorithms-assisted biosensors in the detection of foodborne pathogenic bacteria: Recent advances and future trends. Trends Food Sci. Technol. 2025, 161, 105072. [Google Scholar] [CrossRef]
- Mohseni-Dargah, M.; Falahati, Z.; Dabirmanesh, B.; Nasrollahi, P.; Khajeh, K. Machine learning in surface plasmon resonance for environmental monitoring. In Artificial Intelligence and Data Science in Environmental Sensing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 269–298. [Google Scholar] [CrossRef]
- Singh, H.P.; Singh, J.; Mukherjee, I.; Singh, S. Surface plasmon resonance-based optical biosensors for refractometric sensing: A theoretical review. In Proceedings of the 3rd IEEE International Conference on Device Intelligence, Computing and Communication Technologies (DICCT 2025), Dehradun, India, 21–22 March 2025; pp. 568–573. [Google Scholar] [CrossRef]
- Choudhary, R.; Rathore, N.; Parihar, K.; Chauhan, M.S.; Binani, S.; Kumar, N. Unveiling the nano world: Expanding food safety monitoring through nano-biosensor technology. J. Food Chem. Nanotechnol. 2024, 10, S94–S100. [Google Scholar] [CrossRef]
- Gbonyea, F.P.; Wu, J.; Li, M.; Liang, M.; Zhang, M.; Zhu, X.; Li, X.; He, S.; Liu, P. Smartphone-integrated nanozyme approaches for rapid and on-site detection: Empowering smart food safety. Food Chem. 2025, 486, 144678. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Tan, G.; Muhammad, R.; Liu, J.; Bi, J. AI-powered innovations in food safety from farm to fork. Foods 2025, 14, 1973. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Song, G.; Huang, K.; Luo, Y.; Liu, Q.; He, X.; Cheng, N. Intelligent biosensing strategies for rapid detection in food safety: A review. Biosens. Bioelectron. 2022, 202, 114003. [Google Scholar] [CrossRef]
- Sariçam, M. Crafting tomorrow’s diagnostics: Metal nanoparticles in biosensors—Types, synthesis, and future frontiers in health, environment, and food safety. In Handbook of Biosensors Technology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 69–109. [Google Scholar]
- Onyeaka, H.; Akinsemolu, A.; Miri, T.; Nnaji, N.D.; Emeka, C.; Tamasiga, P.; Pang, G.; Al-sharify, Z. Advancing food security: The role of machine learning in pathogen detection. Appl. Food Res. 2024, 4, 100532. [Google Scholar] [CrossRef]
- Xu, Y.; Ahmad, W.; Chen, M.; Wang, J.; Jiao, T.; Wei, J.; Chen, Q.; Li, D.; Chen, X.; Chen, Q. Active capture-directed bimetallic nanosubstrate for enhanced SERS detection of Staphylococcus aureus by combining strand exchange amplification and wavelength-selective machine learning. Biosens. Bioelectron. 2025, 278, 117363. [Google Scholar] [CrossRef]
- Dong, Y.; Hu, J.; Jin, J.; Zhou, H.; Jin, S.; Yang, D. Advances in machine learning-assisted SERS sensing towards food safety and biomedical analysis. TrAC Trends Anal. Chem. 2024, 180, 117974. [Google Scholar] [CrossRef]
- Lee, I.-H.; Ma, L. Integrating machine learning, optical sensors, and robotics for advanced food quality assessment and food processing. Food Innov. Adv. 2025, 4, 65–72. [Google Scholar] [CrossRef]
- He, Q.; Huang, H.; Wang, Y. Detection technologies, and machine learning in food: Recent advances and future trends. Food Biosci. 2024, 62, 105558. [Google Scholar] [CrossRef]
- Kovalishyn, V.; Hodyna, D.; Metelytsia, L. Development of Multi-task QSTR Models for Acute Toxicity Prediction Towards Daphnia magna Using Machine Learning in the OCHEM Platform. Medinformatics 2025, 2, 93–98. [Google Scholar] [CrossRef]
- Luo, Y.; Nartker, S.; Miller, H.; Hochhalter, D.; Wiederoder, M.; Wiederoder, S.; Setterington, E.; Drzal, L.T.; Alocilja, E.C. Surface functionalization of electrospun nanofibers for detecting E. coli O157:H7 and BVDV cells in a direct-charge transfer biosensor. Biosens. Bioelectron. 2010, 26, 1612–1617. [Google Scholar] [CrossRef]
- Amin, N.; Almasi, A.; Ozer, T.; Henry, C.S.; Hosseinzadeh, L.; Keshavarzi, Z. Recent advances of optical biosensors in veterinary medicine: Moving towards the point of care applications. Curr. Top. Med. Chem. 2023, 23, 2242–2265. [Google Scholar] [CrossRef]
- Nastasijevic, I.; Kundacina, I.; Jaric, S.; Pavlovic, Z.; Radovic, M.; Radonic, V. Recent advances in biosensor technologies for meat production chain. Foods 2025, 14, 744. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Asiri, A.M.; Du, D.; Wen, W.; Wang, S.; Lin, Y. Nanomaterial-enhanced paper-based biosensors. TrAC Trends Anal. Chem. 2014, 58, 31–39. [Google Scholar] [CrossRef]
- Bari, A.; Aslam, S.; Khan, H.U.; Shakil, S.; Yaseen, M.; Shahid, S.; Yusaf, A.; Afshan, N.; Shafqat, S.S.; Zafar, M.N. Next-generation optical biosensors: Cutting-edge advances in optical detection methods. Plasmonics 2025. [Google Scholar] [CrossRef]
- Surbhi, G.; Sanjay, S.; Neeti, K. Aptamer-based optical sensors for food safety. In Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices; Elsevier: Amsterdam, The Netherlands, 2024; pp. 125–146. [Google Scholar] [CrossRef]
- Garcia-Vello, P.; Aiello, K.; Smith, N.M.; Fabrega, J.; Paraskevopoulos, K.; Hugas, M.; Heppner, C. Preparing for future challenges in risk assessment in the European Union. Trends Biotechnol. 2022, 40, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Levidow, L.; Carr, S. Europeanising advisory expertise: The role of “independent, objective, and transparent” scientific advice in agri-biotech regulation. Environ. Plan. C Gov. Policy 2007, 25, 880–895. [Google Scholar] [CrossRef]
- Vero, V.; Gasbarrini, A. The EFSA health claims “learning experience”. Int. J. Food Sci. Nutr. 2012, 63 (Suppl. 1), 14–16. [Google Scholar] [CrossRef]
- von Wright, A. Safety assessment of probiotics in the European Union (EU). In Lactic Acid Bacteria: Microbiological and Functional Aspects; CRC Press: Boca Raton, FL, USA, 2019; pp. 723–734. [Google Scholar] [CrossRef]
- Luong, J.H.T.; Male, K.B.; Glennon, J.D. Biosensor technology: Technology push versus market pull. Biotechnol. Adv. 2008, 26, 492–500. [Google Scholar] [CrossRef]
- Caiazza, R.; Bigliardi, B. Business models for biosensors in the food industry. In Handbook of Cell Biosensors; Springer: Berlin/Heidelberg, Germany, 2021; pp. 659–678. [Google Scholar] [CrossRef]
- Hogan, J.M.; Kasser, M.; Prem, S. 7.42 Regulatory affairs. In Comprehensive Biomaterials II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 813–828. [Google Scholar] [CrossRef]
- Pawnikar, V.; Patel, M. Biosensors in wearable medical devices: Regulatory framework and compliance across US, EU, and Indian markets [Biocapteurs dans les dispositifs médicaux portables: Cadre réglementaire et conformité sur les marchés américain, européen et indien]. Ann. Pharm. Françaises 2025, 83, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Anh, N.H.; Doan, M.Q.; Dinh, N.X.; Huy, T.Q.; Tri, D.Q.; Ngoc Loan, L.T.; Van Hao, B.; Le, A.-T. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: Recent advances and future perspectives. RSC Adv. 2022, 12, 10950–10988. [Google Scholar] [CrossRef]
Metric | Surface Plasmon Resonance (SPR) | Interferometric | Fluorescence | Colorimetric |
---|---|---|---|---|
Assay Type | Label-free, real-time monitoring [37,38,39]. | Label-free, real-time monitoring [40,41]. | Label-based, real-time assays [33,42]. | Label-based, real-time assays [33,42]. |
Limit of Detection (LOD) | Very high sensitivity; typical LOD ranges from 0.05–10 mg/L depending on sensor design and surface chemistry [37,38,43]. | High sensitivity, dependent on waveguide geometry and refractive index contrast [41]. | High sensitivity, strongly dependent on fluorophore efficiency and labeling strategies [42]. | Moderate sensitivity; relies on visible changes in color intensity, influenced by chromogenic reagents [33]. |
Time-to-Result | Rapid (minutes to <1 h) depending on sample prep [37,38]. | Rapid, but often requires precise alignment and calibration [40]. | Rapid, real-time fluorescence detection with fast kinetics [42]. | Rapid, typically within minutes, easy visual readout [33]. |
Cost per Test | Moderate to high; polymer-based chips are cheaper, metal-coated chips are costly [43,44]. | Moderate to high; fabrication of waveguides is expensive [41]. | Moderate to high; fluorophores and optics add cost [42]. | Low to moderate; colorimetric reagents are inexpensive [33]. |
System Complexity | Moderate; requires precise optics, alignment, and calibration [37,38]. | High; relies on nanofabrication and precise interferometric measurement [40]. | Moderate; requires fluorescence filters, excitation sources, and quenching minimization [42]. | Low; relatively simple detection setups [33]. |
Multiplexing Capability | High; multiple analytes can be detected on one chip [38]. | High; multiple analytes detectable with advanced interferometric patterns [40]. | High; spectral multiplexing possible with multiple fluorophores [42]. | Moderate; limited by distinguishable color changes [33]. |
Suitability (Lab vs. Field) | Both lab and field; portable SPR chips under development [44]. | Mostly lab-based due to alignment and fabrication complexity [41]. | Suitable for both lab and field with handheld fluorescence readers [42]. | Suitable for both lab and field; naked-eye readouts make them accessible [33]. |
Analyte Type | Broad: proteins, nucleic acids, toxins, small molecules [37,38,43]. | Proteins, nucleic acids, and complex biomolecular interactions [41]. | Proteins, nucleic acids, and small molecules; widely used for viral diagnostics [42]. | Proteins, nucleic acids, and small molecules; suitable for pathogens and toxins [33]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boro, P.R.; Borthakur, P.P.; Baruah, E. Advancements in Optical Biosensor Technology for Food Safety and Quality Assurance. Eng. Proc. 2025, 106, 6. https://doi.org/10.3390/engproc2025106006
Boro PR, Borthakur PP, Baruah E. Advancements in Optical Biosensor Technology for Food Safety and Quality Assurance. Engineering Proceedings. 2025; 106(1):6. https://doi.org/10.3390/engproc2025106006
Chicago/Turabian StyleBoro, Pabina Rani, Partha Protim Borthakur, and Elora Baruah. 2025. "Advancements in Optical Biosensor Technology for Food Safety and Quality Assurance" Engineering Proceedings 106, no. 1: 6. https://doi.org/10.3390/engproc2025106006
APA StyleBoro, P. R., Borthakur, P. P., & Baruah, E. (2025). Advancements in Optical Biosensor Technology for Food Safety and Quality Assurance. Engineering Proceedings, 106(1), 6. https://doi.org/10.3390/engproc2025106006