Electrochemical Aptasensing Utilizing Titania-Based Surfaces for Tetracycline Detection †
Abstract
1. Introduction
2. Materials and Methods
3. Results and Analysis
3.1. Material Characteristics
3.2. Detection of Tetracycline
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Electrochemical DNA biosensors. Electroanalysis 2009, 21, 1237–1250. [Google Scholar] [CrossRef]
- Raykova, M.R.; Corrigan, D.K.; Holdsworth, M.; Henriquez, F.L.; Ward, A.C. Emerging Electrochemical Sensors for Real-Time Detection of Tetracyclines in Milk. Biosensors 2021, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Huang, J.; Ye, H.; Xu, H.; Cai, D.; Wang, D. A High-Performance Electrochemical Sensor for Sensitive Detection of Tetracycline Based on a Zr-UiO-66/MWCNTs/AuNPs Composite Electrode. Anal. Methods 2022, 14, 3000–3010. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-Junior, W.S.; Zaccarin, L.F.; Oliveira, G.G.; de Oliveira, P.R.; Kalinke, C.; Bonacin, J.A.; Prakash, J.; Janegitz, B.C. Electrochemical Sensor Based on Nanodiamonds and Manioc Starch for Detection of Tetracycline. J. Sens. 2021, 2021, 6622612. [Google Scholar] [CrossRef]
- Sankhla, L.; Kumar, A.; Kushwah, H.S. Electrochemical Detection of Tetracycline Using Cu-MOF Functionalised Screen-Printed Electrodes. Sci. Rep. 2025, 15, 19129. [Google Scholar] [CrossRef] [PubMed]
- Malecka-Baturo, K.; Zaganiaris, A.; Grabowska, I.; Kurzątkowska-Adaszyńska, K. Electrochemical Biosensor Designed to Distinguish Tetracyclines Derivatives by ssDNA Aptamer Labelled with Ferrocene. Int. J. Mol. Sci. 2022, 23, 13785. [Google Scholar] [CrossRef] [PubMed]
- Bousiakou, L.; Al-Dosary, O.; Economou, A.; Subjakova, V.; Hianik, T. Current Trends in the Use of Semiconducting Materials for Electrochemical Aptasensing. Chemosensors 2023, 11, 438. [Google Scholar] [CrossRef]
- Amri, F.; Fatimawali; Yulizar, Y.; Pakaya, Z.; Retnaningsih, C. Mesoporous TiO2-Based Architectures as Promising Sensing Materials towards Next-Generation Biosensing Applications. RSC Adv. 2021, 11, 21477–21498. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, H.; Xie, M.; Zhao, F.; Han, S. Label-Free Electrochemical Aptasensor for Sensitive Detection of Malachite Green Based on AuNPs/MWCNTs@TiO2 Nanocomposites. Int. J. Mol. Sci. 2023, 24, 10594. [Google Scholar] [CrossRef] [PubMed]
- Al Fatease, A.; Haque, M.; Umar, A.; Ansari, S.G.; Alhamhoom, Y.; Muhsinah, A.B.; Mahnashi, M.H.; Guo, W.; Ansari, Z.A. Label-Free Electrochemical Sensor Based on Pure and Mn-Doped TiO2 Nanoparticles for Myoglobin Detection: Biomarker for Acute Myocardial Infarction. Molecules 2021, 26, 4252. [Google Scholar] [CrossRef] [PubMed]
- Vallez, L.; Jimenez-Villegas, S.; Garcia-Esparza, A.T.; Jiang, Y.; Park, S.; Wu, Q.; Gill, T.M.; Sokaras, D.; Siahrostami, S.; Zheng, X. Effect of Doping TiO2 with Mn for Electrocatalytic Oxidation in Acid and Alkaline Electrolytes. RSC Adv. 2022, 12, 357–366. [Google Scholar] [CrossRef]
- Karapetis, S.; Bousiakou, L.G. Developing a Sensitive Method for the Electrochemical Determination of Tetracycline Using MB-Tagged Aptamers on Gold Electrode Substrates. Eng. Proc. 2023, 35, 38. [Google Scholar] [CrossRef]
- Niazi, J.H.; Lee, S.J.; Gu, B.M. Single-stranded DNA aptamers specific for antibiotics tetracyclines. Bioorganic Med. Chem. 2008, 16, 7245–7253. [Google Scholar] [CrossRef] [PubMed]
- Praveen, P.; Viruthagiri, G.; Mugundan, S.; Shanmugam, N. Sol–gel synthesis and characterization of pure and manganese doped TiO2 nanoparticles—A new NLO active material. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 120, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Podelinska, A.; Neilande, E.; Pankratova, V.; Serga, V.; Bandarenka, H.; Burko, A.; Piskunov, S.; Pankratov, V.A.; Sarakovskis, A.; Popov, A.I.; et al. Structural and Spectroscopic Characterization of TiO2 Nanocrystalline Materials Synthesized by Different Methods. Nanomaterials 2025, 15, 498. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Shao, Y.; Zheng, R.; Wang, P.; Li, Y.; Zhao, Z.; An, J.; Hao, C.; Kang, M. A novel surface molecularly imprinted polymer electrochemical sensor based on porous magnetic TiO2 for highly sensitive and selective detection of tetracycline. Environ. Sci. Nano 2023, 10, 1614–1628. [Google Scholar] [CrossRef]
- Cui, H.; Yao, C.; Cang, Y.; Liu, W.; Zhang, Z.; Miao, Y.; Xin, Y. Oxygen vacancy-regulated TiO2 nanotube photoelectrochemical sensor for highly sensitive and selective detection of tetracycline hydrochloride. Sens. Actuators B Chem. 2022, 359, 131564. [Google Scholar] [CrossRef]
- Huang, G.; Si, H.; Zou, L.; Zhang, H.; Liao, J.; Lin, S. Phase Modulation of Ti3O/R-TiO2 Nanocomposites for the Self-Powered Photoelectrochemical Sensing of Tetracycline. ACS Appl. Nano Mater. 2024, 7, 715–725. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakos, M.; Bousiakou, L.G. Electrochemical Aptasensing Utilizing Titania-Based Surfaces for Tetracycline Detection. Eng. Proc. 2025, 106, 11. https://doi.org/10.3390/engproc2025106011
Kakos M, Bousiakou LG. Electrochemical Aptasensing Utilizing Titania-Based Surfaces for Tetracycline Detection. Engineering Proceedings. 2025; 106(1):11. https://doi.org/10.3390/engproc2025106011
Chicago/Turabian StyleKakos, Minas, and Leda Georgia Bousiakou. 2025. "Electrochemical Aptasensing Utilizing Titania-Based Surfaces for Tetracycline Detection" Engineering Proceedings 106, no. 1: 11. https://doi.org/10.3390/engproc2025106011
APA StyleKakos, M., & Bousiakou, L. G. (2025). Electrochemical Aptasensing Utilizing Titania-Based Surfaces for Tetracycline Detection. Engineering Proceedings, 106(1), 11. https://doi.org/10.3390/engproc2025106011