Energetic Analysis for the Improvement of a Cupola Furnace †
Abstract
1. Introduction
- Charging zone: Located at the uppermost section of the cupola furnace, where raw materials are introduced in the following sequence: coke, metallic scrap, and finally limestone (responsible for impurity separation). This sequential arrangement is critical to ensuring process efficiency.
- Combustion zone: Situated in the middle section, where coke undergoes combustion, generating the heat required to melt the metallic feedstock.
- Well zone: Positioned at the furnace’s base, serves as the final stage where molten material settles. Notably, the limestone facilitates slag separation from the molten mixture. Due to density differences, the slag floats atop the molten mixture and is readily separated.
2. Furnace Analysis
3. Development and Analysis of Model
3.1. Mass Balance Analysis
3.2. Energy Balance Analysis
3.2.1. Heat Transfer in Combustion Zone (A)
3.2.2. Heat Transfer in Melting Zone (B)
3.2.3. Metal Melting
3.2.4. Heat in Slag
3.2.5. Heat in Exhaust Gases
3.2.6. Heat Losses Through Walls
3.2.7. Heat Transfer in Well Zone
3.3. Furnace Efficiency
4. Technical Improvement Proposal
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pribulova, A.; Baricova, D.; Futas, P.; Pokusova, M.; Eperjesi, S. Cupola furnace slag: Its origin, properties and utilization. Int. J. Met. 2019, 13, 627–640. [Google Scholar] [CrossRef]
- Raja, R.; Kumar, S. Cupola slag as a green concrete-making material and its performance characteristics-A review. Renew. Sustain. Energy Rev. 2023, 185, 113573. [Google Scholar] [CrossRef]
- Ochejah, Y.Y.; Cyril, O.; Omaone, I.F.; Ogwudubi, A.F.; Onakemu, O.A. Cupola Furnace Design and Fabrication for Industrial Development. Int. J. Sci. Adv. 2021, 2, 102–106. [Google Scholar] [CrossRef]
- Jardón, L.E.; (Universidad Nacional Autónoma de México, Mexico City, Mexico). Lecture Notes: Introduction to Metallurgical and Materials Process Engineerings, 2020.
- Meredith, J. The Cupola Furnace. Atlas Foundry Company Publications. Available online: http://www.atlasfdry.com/cupolafurnace.htm (accessed on 24 April 2025).
- Raymond, H.M. Modern Shop Practice, Part 1–3. Available online: https://upload.wikimedia.org/wikipedia/commons/b/b1/Modern_shop_practice%3B_a_general_reference_work_-_Vol._2_%28IA_modernshoppracti02unse%29.pdf (accessed on 24 April 2025).
- Niehoff, T.; Struning, H.; Lemperle, M. Oxy-fuel burner technology for cupola melting. In Proceedings of the 2nd International Cupola Conference, Trier, Germany, 18–19 March 2004. [Google Scholar]
- Ajah, S.A.; Idorenyin, D.; Ezurike, B.O.; Nwokenkwo, U.; Ikwuagwu, C.V. Thermal analysis to investigate the effects of operating parameters on conventional cupola furnace efficiency. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2023, 237, 1354–1366. [Google Scholar] [CrossRef]
- Sultanguzin, I.A.; Isaev, M.V.; Kurzanov, S.Y. Optimizing the production of coke, coal chemicals, and steel on the basis of environmental and energy criteria. Metallurgist 2011, 54, 600–607. [Google Scholar] [CrossRef]
- Rathod, K.; Gupta, S.; Sharma, A.; Prakash, S. Energy-efficient melting technologies in foundry industry. Indian Foundry J. 2016, 62, 39–46. [Google Scholar]
- Norwood, C.; Noble, A.; Williams, S. Iron Melting Cupola Furnace with Heat Recuperating System (MSE/ME 499 Project); University of Alabama: Birmingham, UK, 2010; pp. 1–91. [Google Scholar]
- Basavarajappa, S.; Manavendra, G.; Prakash, S.B. A review on performance study of finned tube heat exchanger. Int. J. Heat Mass Transf. 2023, 180, 121789. [Google Scholar] [CrossRef]
- Çengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer: Fundamentals and Applications, 5th ed.; McGraw-Hill Education: Columbus, OH, USA, 2015. [Google Scholar]
- Klein, S.A. EES—Engineering Equation Solver, Version 12.068. F-Chart Software. Available online: https://fchartsoftware.com (accessed on 24 April 2025).
Parameter/Component | Specification |
---|---|
Total height | 16.5 m |
Internal diameter | 0.914 m |
Thickness | 0.393 m |
Charging zone height | 5.37 m |
Combustion zone height | 2.3 m |
Well zone height | 2.33 m |
Construction material | A36 steel plates (1/4″ and 3/16″) |
Air Blower | Specification |
---|---|
Brand | Chicago Blower |
Model | D53/I3/BH/CW |
Volumetric flow rate | 1.085 m3/s |
Rotational speed | 3859 rpm * |
Charge Material | Quantity per Charge (kg) |
---|---|
Metal scrap | 220 |
Coke | 34 |
Limestone (ls) | 12 |
Parameter | Gray Iron | Nodular Steel |
---|---|---|
Metal melting time between taps | First tap: 28–32 min Post-first tap interval: 8–16 min | First tap: 28–32 min Post-first tap interval: 8–16 min |
Charges per shift | 160–198 | 90–110 |
Parameter | kW |
---|---|
314 | |
684 | |
0.458 (45.8%) |
Parameter | Without Heat Exchanger | With Heat Exchanger |
---|---|---|
Thermal efficiency, η | 0.21 | 0.24 |
Coke mass per charge (kg) | 34 | 30 |
Fuel energy requirement (coke) (MJ) * | 4457 | 3932 |
Period | Coke Savings (kg) | Cost Savings (USD) |
---|---|---|
Shift | 716 | 115.99 |
Day | 2148 | 347.97 |
Week | 10,740 | 1739.88 |
Month | 64,440 | 10,439.28 |
Year | 773,280 | 125,271.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, A.V.; Bulos, R.G.; Prince, J.C.; Zárate, A.; Gijón, M.A. Energetic Analysis for the Improvement of a Cupola Furnace. Eng. Proc. 2025, 104, 86. https://doi.org/10.3390/engproc2025104086
Sánchez AV, Bulos RG, Prince JC, Zárate A, Gijón MA. Energetic Analysis for the Improvement of a Cupola Furnace. Engineering Proceedings. 2025; 104(1):86. https://doi.org/10.3390/engproc2025104086
Chicago/Turabian StyleSánchez, Axel Vargas, Ricardo Galindo Bulos, Juan C. Prince, Asunción Zárate, and Miguel A. Gijón. 2025. "Energetic Analysis for the Improvement of a Cupola Furnace" Engineering Proceedings 104, no. 1: 86. https://doi.org/10.3390/engproc2025104086
APA StyleSánchez, A. V., Bulos, R. G., Prince, J. C., Zárate, A., & Gijón, M. A. (2025). Energetic Analysis for the Improvement of a Cupola Furnace. Engineering Proceedings, 104(1), 86. https://doi.org/10.3390/engproc2025104086