Assessment of Rogowski Coils for Measurement of Full Discharges in Power Transformers †
Abstract
:1. Introduction
2. Mathematical Model
3. Materials and Methods
4. Results and Discussion
- In industrial scenarios, electromagnetic noise is generally restricted to a maximum of hundreds of kilohertz. However, the frequency response of the Teflon coil is limited to 5 to 10 MHz. Therefore, this device avoids measurement errors due to high noise industrial scenarios. On the other hand, the Ferrite coil proved to be more sensitive to these noises since it presented a high PSD for lower frequencies.
- The production cost of the Teflon coil is financially advantageous compared to the Ferrite coil due to the composition of the core.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussain, M.R.; Refaat, S.S.; Abu-Rub, H. Overview and Partial Discharge Analysis of Power Transformers: A Literature Review. IEEE Access 2021, 9, 64587–64605. [Google Scholar] [CrossRef]
- De Castro, B.A.; de Melo Brunini, D.; Baptista, F.G.; Andreoli, A.L.; Ulson, J.A.C. Assessment of macro fiber composite sensors for measurement of acoustic partial discharge signals in power transformers. IEEE Sens. J. 2017, 17, 6090–6099. [Google Scholar] [CrossRef] [Green Version]
- International Electrotechnical Commission. High-Voltage Test Techniques: Partial Discharge Measurements; IEC-60270; IEC: Geneva, Switzerland, 2000; pp. 13–31. [Google Scholar]
- Murugan, R.; Ramasamy, R. Understanding the power transformer component failures for health index-based maintenance planning in electric utilities. Eng. Fail. Anal. 2019, 96, 274–288. [Google Scholar] [CrossRef]
- Sikorski, W. Development of acoustic emission sensor optimized for partial discharge monitoring in power transformers. Sensors 2019, 19, 1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binotto, A.; Castro, B.A.d.; Santos, V.V.d.; Rey, J.A.A.; Andreoli, A.L. A Comparison between piezoelectric sensors applied to multiple partial discharge detection by advanced signal processing analysis. Eng. Proc. 2020, 2, 55. [Google Scholar]
- Beura, C.P.; Beltle, M.; Tenbohlen, S. Study of the Influence of Winding and Sensor Design on Ultra-High Frequency Partial Discharge Signals in Power Transformers. Sensors 2020, 20, 5113. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, V.V.; de Castro, B.A.; Binotto, A.; Rey, J.A.A.; Lucas, G.B.; Andreoli, A.L. An application of wavelet analysis to assess partial discharge evolution by acoustic emission sensor. In Proceedings of the 7th Electronic Conference on Sensors and Applications, online, 15 November 2020; Volume 15, p. 30. [Google Scholar]
- Li, H.; Bu, J.; Li, W.; Lv, J.; Wang, X.; Hu, K.; Yu, Y. Fiber optic Fabry–Perot sensor that can amplify ultrasonic wave for an enhanced partial discharge detection. Sci. Rep. 2021, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ardila-Rey, J.A.; Montaña, J.; De Castro, B.A.; Schurch, R.; Covolan Ulson, J.A.; Muhammad-Sukki, F.; Bani, N.A. A comparison of inductive sensors in the characterization of partial discharges and electrical noise using the chromatic technique. Sensors 2018, 18, 1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardila-Rey, J.A.; Barrueto, A.; Zerene, A.; Castro, B.A.d.; Ulson, J.A.C.; Mas’ud, A.A.; Valdivia, P. Behavior of an inductive loop sensor in the measurement of partial discharge pulses with variations in its separation from the primary conductor. Sensors 2018, 18, 2324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigo-Mor, A.; Muñoz, F.A.; Castro-Heredia, L.C. Principles of charge estimation methods using high-frequency current transformer sensors in partial discharge measurements. Sensors 2020, 20, 2520. [Google Scholar] [CrossRef] [PubMed]
- Binotto, A.; de Castro, B.A.; Ardila-Rey, J.A.; Andreoli, A.L. Partial Discharge Detection of Transformer Bushing Based on Acoustic Emission and Current Analysis. In Proceedings of the 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 5–7 August 2021; pp. 1–4. [Google Scholar]
- Shi, Y.; Xin, Z.; Loh, P.C.; Blaabjerg, F. A Review of Traditional Helical to Recent Miniaturized Printed Circuit Board Rogowski Coils for Power-Electronic Applications. IEEE Trans. Power Electron. 2020, 35, 12207–12222. [Google Scholar] [CrossRef]
- Moreno, M.V.R.; Robles, G.; Albarracín, R.; Rey, J.A.; Tarifa, J.M.M. Study on the self-integration of a Rogowski coil used in the measurement of partial discharges pulses. Electr. Eng. 2017, 99, 817–826. [Google Scholar] [CrossRef]
- Hussain, G.A.; Zaher, A.A.; Hummes, D.; Safdar, M.; Lehtonen, M. Hybrid sensing of internal and surface partial discharges in air-insulated medium voltage switchgear. Energies 2020, 13, 1738. [Google Scholar] [CrossRef] [Green Version]
- Waldi, E.P.; Lestari, A.I.; Fernandez, R.; Mulyadi, S.; Murakami, Y.; Hozumi, N. Rogowski coil sensor in the digitization process to detect partial discharge. Telkomnika 2020, 18, 1062–1071. [Google Scholar] [CrossRef]
- Liu, X.; Huang, H.; Dai, Y. Effect of Frequency on the Linearity of Double-Layer and Single-Layer Rogowski Coils. IEEE Sens. J. 2020, 20, 9910–9918. [Google Scholar] [CrossRef]
- Argüeso, M.; Robles, G.; Sanz, J. Implementation of a Rogowski coil for the measurement of partial discharges. Rev. Sci. Instrum. 2005, 76, 065107. [Google Scholar] [CrossRef]
- Radun, A. An alternative low-cost current-sensing scheme for high-current power electronics circuits. IEEE Trans. Ind. Electron. 1995, 42, 78–84. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, J.; Jia, J.; Tao, F.; Yang, L. Design of a current transducer with a magnetic core for use in measurements of nanosecond current pulses. Meas. Sci. Technol. 2006, 17, 895–900. [Google Scholar] [CrossRef]
- Carvalho, L.; Lucas, G.; Rocha, M.; Fraga, C.; Andreoli, A. Undervoltage Identification in Three Phase Induction Motor Using Low-Cost Piezoelectric Sensors and STFT Technique. Proceedings 2019, 42, 72. [Google Scholar] [CrossRef] [Green Version]
Dimensions | Ferrite | Teflon |
---|---|---|
Turns (N) | 50 | 50 |
Toroid average length (L) | 78.9 mm | 86.2 mm |
Toroid thickness (d) | 12.46 mm | 11.15 mm |
Inner radius (a) | 18.75 mm | 19.33 mm |
Outer radius (b) | 31.45 mm | 35.36 mm |
Toroid average radius (R) | 25.1 mm | 27.35 mm |
Toroide average width (r) | 6.35 mm | 9.02 mm |
Parameter | Teflon | Ferrite |
---|---|---|
1.4 H | 3.65 mH | |
M | 28 nH | 73.1 H |
0.268 | 0.268 | |
4.68 pF | 6.32 pF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riehl, R.R.; de Castro, B.A.; Fraga, J.R.C.P.; Puccia, V.; Lucas, G.B.; Andreoli, A.L. Assessment of Rogowski Coils for Measurement of Full Discharges in Power Transformers. Eng. Proc. 2021, 10, 16. https://doi.org/10.3390/ecsa-8-11309
Riehl RR, de Castro BA, Fraga JRCP, Puccia V, Lucas GB, Andreoli AL. Assessment of Rogowski Coils for Measurement of Full Discharges in Power Transformers. Engineering Proceedings. 2021; 10(1):16. https://doi.org/10.3390/ecsa-8-11309
Chicago/Turabian StyleRiehl, Rudolf Ribeiro, Bruno Albuquerque de Castro, José Renato Castro Pompéia Fraga, Victor Puccia, Guilherme Beraldi Lucas, and André Luiz Andreoli. 2021. "Assessment of Rogowski Coils for Measurement of Full Discharges in Power Transformers" Engineering Proceedings 10, no. 1: 16. https://doi.org/10.3390/ecsa-8-11309
APA StyleRiehl, R. R., de Castro, B. A., Fraga, J. R. C. P., Puccia, V., Lucas, G. B., & Andreoli, A. L. (2021). Assessment of Rogowski Coils for Measurement of Full Discharges in Power Transformers. Engineering Proceedings, 10(1), 16. https://doi.org/10.3390/ecsa-8-11309