Azide-Alkyne Cycloaddition Catalyzed by a Glucose/Benedict Reagent System †
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Procedure for the Synthesis of 1,2,3-Triazoles Catalyzed by Glucose/Benedict Reagent System
3.1.1. 1-(4-Bromophenyl)-4-(4-chlorophenoxymethyl)-1,2,3-triazole 3
3.1.2. 4-(4-Chlorophenoxymethyl)-1-phenyl-1,2,3-triazole 4
3.1.3. (1-Benzyl-1,2,3-triazol-4-ylmethoxy)-benzaldehyde 5
3.1.4. 1-Benzyl-4-phenyl-1,2,3-triazole 6
3.1.5. 1,4-. Diphenyl-1,2,3-triazole 7
3.1.6. 4-Phenyl-1-(3-phenylpropyl) -1,2,3-triazole 8
3.1.7. (1-Benzyl-1,2,3-triazol-4-yl)-methanol 9
3.1.8. 3-(1-Benzyl-1,2,3-triazol-4-yl)-propan-1-ol 10
3.1.9. 2-(1-Benzyl-1,2,3-triazol-4-ylmethyl)-isoindole-1,3-dione 11
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Christian, W.; Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by RegiospecificCopper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. [Google Scholar]
- Chen, Y.; Tong, Z.R. Click Chemistry: Approaches, Applications and Chellenges; Nova Science Publishers: New York, NY, USA, 2017. [Google Scholar]
- Chandrasekaran, S. Click Reactions in Organic Synthesis; Wiler-VCH: Wienheim, Germany, 2016. [Google Scholar]
- El-Azab, A.S.; Abdel-Aziz, A.A.M. Click Chemistry and Applications; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2014. [Google Scholar]
- Lahann, J. Click Chemistry for Biotechnology and Materials Science; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Rostovtsev, V.V.; Luke, G.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Konwar, M.; Ali, A.A.; Chetia, M.; Saikia, P.J.; Sarma, D. Fehling solution/DIPEA/hydrazine: An alternative catalytic medium for regioselective synthesis of 1,4-disubstituted-1H-1,2,3-triazoles using azide–alkyne cycloaddition reaction. Tetrahedron Lett. 2016, 57, 4473–4476. [Google Scholar] [CrossRef]
- García, M.A.; Ríos, Z.G.; González, J.; Pérez, V.M.; Lara, N.; Fuentes, A.; González, C.; Corona, D.; Cuevas-Yañez, E. The Use of Glucose as Alternative Reducing Agent in Copper-Catalyzed Alkyne-Azide Cycloaddition. Lett. Org. Chem. 2011, 8, 701–706. [Google Scholar] [CrossRef]
- Santana-Martínez, I.; Ramírez-Palma, M.T.; Sánchez-Escalera, J.; Martínez-Otero, D.; García-Eleno, M.A.; Dorazco-González, A.; Cuevas-Yañez, E. Synthesis, structural analysis, and photophysical properties of bi-1,2,3-triazoles. Struct. Chem. 2020, 31, 191–201. [Google Scholar] [CrossRef]
- Konwar, M.; Hazarika, R.; Ali, A.A.; Chetia, M.; Khupse, N.D.; Saikia, P.J.; Sarma, D. Benedict’s solution/vitamin C: An alternative catalytic protocol for the synthesis of regioselective-1,4-disubstituted-1H-1,2,3-triazoles at room temperature. Appl. Organomet. Chem. 2018, 32, e4425. [Google Scholar] [CrossRef]
- González, J.; Pérez, V.M.; Jiménez, D.O.; López-Valdez, G.; Corona, D.; Cuevas-Yañez, E. Effect of temperature on triazole and bistriazole formation through copper-catalyzed alkyne–azide cycloaddition. Tetrahedron Lett. 2011, 52, 3514–3517. [Google Scholar] [CrossRef]
Entry | Catalyst Ratio (% mmol) | Temperature (°C) | Reaction Time (h) | %Yield |
---|---|---|---|---|
1 | 2.5 | Room Temperature (R.T.) | 24 | 0 |
2 | 5 | R.T. | 24 | 0 |
3 | 10 | R.T. | 24 | 0 |
4 | 2.5 | reflux | 24 | 30 |
5 | 5 | reflux | 24 | 44 |
6 | 10 | reflux | 24 | 53 |
7 | 2.5 | 50 | 24 | 67 |
8 | 5 | 50 | 24 | 67 |
9 | 10 | 50 | 24 | 68 |
10 | 2.5 | 50 °C to R.T. | 12 | 32 |
11 | 5 | 50 °C to R.T. | 12 | 49 |
12 | 10 | 50 °C to R.T. | 12 | 51 |
13 | 2.5 | 50 °C to R.T. | 24 | 70 |
14 | 5 | 50 °C to R.T. | 24 | 73 |
15 | 10 | 50 °C to R.T. | 24 | 74 |
16 | 2.5 | 50 °C to R.T. | 48 | 71 |
17 | 5 | 50 °C to R.T. | 48 | 74 |
18 | 10 | 50 °C to R.T. | 48 | 75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, J.G.G.; Becerra-Buitrago, A.F.; García-Sánchez, L.C.; García-Eleno, M.A.; Unnamatla, M.V.B.; Cuevas-Yañez, E. Azide-Alkyne Cycloaddition Catalyzed by a Glucose/Benedict Reagent System. Chem. Proc. 2022, 8, 64. https://doi.org/10.3390/ecsoc-25-11634
Torres JGG, Becerra-Buitrago AF, García-Sánchez LC, García-Eleno MA, Unnamatla MVB, Cuevas-Yañez E. Azide-Alkyne Cycloaddition Catalyzed by a Glucose/Benedict Reagent System. Chemistry Proceedings. 2022; 8(1):64. https://doi.org/10.3390/ecsoc-25-11634
Chicago/Turabian StyleTorres, Jesús G. García, Andrés F. Becerra-Buitrago, Luis Carlos García-Sánchez, Marco A. García-Eleno, M. V. Basavanag Unnamatla, and Erick Cuevas-Yañez. 2022. "Azide-Alkyne Cycloaddition Catalyzed by a Glucose/Benedict Reagent System" Chemistry Proceedings 8, no. 1: 64. https://doi.org/10.3390/ecsoc-25-11634
APA StyleTorres, J. G. G., Becerra-Buitrago, A. F., García-Sánchez, L. C., García-Eleno, M. A., Unnamatla, M. V. B., & Cuevas-Yañez, E. (2022). Azide-Alkyne Cycloaddition Catalyzed by a Glucose/Benedict Reagent System. Chemistry Proceedings, 8(1), 64. https://doi.org/10.3390/ecsoc-25-11634