Synthesis and Antimicrobial Evaluation of Some New Pyrazole Derivatives Containing Thiazole Scaffolds †
Abstract
:1. Introduction
2. Results and Discussion
3. Biological Results and Discussion
4. Experimental Section
4.1. General Procedure for the Synthesis of Phenyl Hydrazone Derivatives 2a–d
4.2. General Procedure for the Synthesis of 1-Phenyl-3-(substituted -phenyl)-1H-pyrazole-4-carbaldehydes 3a–d
4.3. General Procedure for the Synthesis of 2,4-Disubstitutde Thiazole Derivatives 4a–l
4.3.1. Method A
4.3.2. Method B
5. Spectral Data
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.H.; Cui, P.; Song, B.A.; Bhadury, P.S.; Zhu, H.L.; Wang, S.F. Synthesis, structure and antibacterial activity of novel 1-(5-substituted-3-substituted-4,5-dihydro pyrazol-1-yl)ethanone oxime ester derivatives. Bioorg. Med. Chem. 2008, 16, 4075–4082. [Google Scholar] [CrossRef]
- Bondock, S.; Fadaly, W.; Metwally, M.A. Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur. J. Med. Chem. 2010, 45, 3692–3701. [Google Scholar] [CrossRef] [PubMed]
- Radi, S.; Salhi, S.; Radi, A. Synthesis and Preliminary Biological Activity of Some New Pyrazole Derivatives as Acyclonucleoside Analogues. Lett. Drug Des. Discov. 2010, 7, 27–30. [Google Scholar] [CrossRef]
- Sridhar, R.; Perumal, P.J.; Etti, S.; Shanmugam, G.; Ponnuswamy, M.N.; Prabavathy, V.R.; Mathivanan, N. Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates. Bioorg. Med. Chem. Lett. 2004, 14, 6035–6040. [Google Scholar] [CrossRef] [PubMed]
- Prakash, O.; Kumar, R.; Sehrawat, R. Synthesis and antibacterial activity of some new 2,3-dimethoxy-3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl) chroma nones. Eur. J. Med. Chem. 2008, 44, 1763–1767. [Google Scholar] [CrossRef] [PubMed]
- Abbas, I.M.; Abdallah, M.A.; Gomha, S.M.; Kazem, M.S.H. Synthesis and antimicrobial activity of novel azolopyrimidines and pyrido-triazolo-pyrimidinones incorporating pyrazole moiety. J. Heterocycl. Chem. 2017, 54, 3447–3457. [Google Scholar] [CrossRef]
- Ouyang, G.; Chen, Z.; Cai, X.J.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y.; Zeng, S. Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group. Bioorg. Med. Chem. 2008, 16, 9699–9707. [Google Scholar] [CrossRef]
- Abdalla, M.A.; Gomha, S.M.; Abdelaziz, M.R.; Serag, N. Synthesis and antiviral evaluation of some novel thiazoles and 1,3-thiazines substituted with pyrazole moiety against rabies virus. Turk. J. Chem. 2016, 40, 441–453. [Google Scholar] [CrossRef] [Green Version]
- Anzaldi, M.; Maccio, C.; Mazzei, M.; Bertolotto, M.; Ottonello, L.; Dallegri, F.; Balbi, A. Antiproliferative and proapoptotic activities of a new class of pyrazole derivatives in HL-60 cells. Chem. Biodivers. 2009, 6, 1674–1687. [Google Scholar] [CrossRef]
- El-Shafei, A.; Fadda, A.A.; Khalil, A.M.; Ameen, T.; Badria, F.A. Synthesis, antitumor evaluation, molecular modeling and quantitative structure-activity relationship (QSAR) of some novel arylazopyrazolodiazine and triazine analogs. Bioorg. Med. Chem. 2009, 17, 5096–5105. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.A.; Ashour, H.M.A.; Ghany, Y.S.A.; El-Din, A.; Bekhit, A.; Baraka, A. Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. Eur. J. Med. Chem. 2008, 43, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Dadiboyena, S.; Valente, E.J.; Hamme, A.T. A novel synthesis of 1,3,5-trisubstituted pyrazoles through a spiro-pyrazoline intermediate via a tandem 1,3-dipolar cycloaddition/elimination. Tetrahedron Lett. 2009, 50, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Noriaki, K.; Satoru, F. Synthesis and Herbicidal Activity of 1,5-Diarylpyrazole Derivatives. Chem. Pharm. Bull. 1999, 47, 857–859. [Google Scholar]
- Siddiqui, N.; Arshad, M.F.; Ahsan, W. Thiazoles: A valuable insight into the recent advances and biological activities. Int. J. Pharm. Sci. Drug Res. 2009, 1, 136–143. [Google Scholar]
- Vasu, N.; Goud, B.B.; Kumari, Y.B.; Rajitha, B. Design, synthesis and biological evaluation of some novel benimidazole based thiazolyl amines. Rasayan J. Chem. 2013, 6, 201–206. [Google Scholar]
- Singh, N.; Bhati, S.K.; Kumar, A. Thiazolyl/oxazolyl formazanyl indoles as potent anti-inflammatory agents. Eur. J. Med. Chem. 2008, 43, 2597–2609. [Google Scholar] [CrossRef]
- Luzina, E.L.; Popov, A.V. Synthesis and anticancer activity of N-bis(trifluoromethyl)alkyl-N′-thiazolyl and N-bis(trifluoromethyl)alkyl-N’-benzothiazolyl ureas. Eur. J. Med. Chem. 2009, 44, 4944–4953. [Google Scholar] [CrossRef]
- Lesyk, R.; Vladzimirska, O.; Holota, S.; Zaprutko, L.; Gzella, A. New 5-substituted thiazolo [3,2-b][1,2,4]triazol-6-ones: Synthesis and anticancer evaluation. Eur. J. Med. Chem. 2007, 42, 641–648. [Google Scholar] [CrossRef]
- Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Zaprutko, L.; Gzella, A.; Lesyk, R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur. J. Med. Chem. 2009, 44, 1396–1404. [Google Scholar] [CrossRef]
- Kaminskyy, D.; Zimenkovsky, B.; Lesyk, R. Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives. Eur. J. Med. Chem. 2009, 44, 3627–3636. [Google Scholar] [CrossRef]
- Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De, C.E. Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIVagents. Eur. J. Med. Chem. 2008, 43, 2800–2806. [Google Scholar] [CrossRef] [PubMed]
- Satoh, A.; Nagatomi, Y.; Hirata, Y.; Ito, S.; Suzuki, G.; Kimura, T.; Maehara, S.; Hikichi, H.; Satow, A.; Hata, M.; et al. Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist. Bioorg. Med. Chem. Lett. 2009, 19, 5464–5468. [Google Scholar] [CrossRef]
- Azzali, E.; Machado, D.; Kaushik, A.; Vacondio, F.; Flisi, S.; Cabassi, C.S.; Lamichhane, G.; Viveiros, M.; Costantino, G.; Pieroni, M. Substituted N-phenyl-5-(2-(phenylamino)thiazol-4-yl)isoxazole-3-carboxamides are valuable antitubercular candidates that evade innate efflux machinery. J. Med. Chem. 2017, 60, 7108–7122. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, K.; Surana, S.; Jain, P.; Patel, H.M. Mycobacterium Tuberculosis (MTB) GyrB inhibitors: An attractive approach for developing novel drugs against TB. Eur. J. Med. Chem. 2016, 124, 160–185. [Google Scholar] [CrossRef]
- Vaarla, K.; Kesharwani, R.K.; Santosh, K.; Vedula, R.R.; Kotamraju, S.; Toopurani, M.K. Synthesis, biological activity evaluation and molecular docking studies of novel coumarin substituted thiazolyl-3-aryl-pyrazole-4-carbaldehydes. Bioorg. Med. Chem. Lett. 2015, 25, 5797–5803. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qiu, K.M.; Cui, H.E.; Yang, Y.S.; Luo, Y.; Xing, M.; Qiu, X.Y.; Bai, L.F.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents. Bioorg. Med. Chem. 2013, 21, 448–455. [Google Scholar] [CrossRef]
- Bridges, A.J. The rationale and strategy used to develop a series of highly potent, irreversible, inhibitors of the epidermal growth factor receptor family of tyrosine kinases. Curr. Med. Chem. 1999, 6, 825–843. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.C.; Li, D.D.; Li, Q.S.; Lu, X.; Xiao, Z.P.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg. Med. Chem. Lett. 2011, 21, 5374–5377. [Google Scholar] [CrossRef] [PubMed]
- Khloya, P.; Kumar, S.; Kaushik, P.; Surain, P.; Kaushik, D.; Sharma, P.K. Synthesis and biological evaluation of pyrazolylthiazole carboxylic acids as potent anti-inflammatory-antimicrobial agents. Bioorg. Med. Chem. Lett. 2015, 25, 1177–1181. [Google Scholar] [CrossRef]
- Takate, S.J.; Shinde, A.D.; Karale, B.K.; Akolkar, H.; Nawale, L.; Sarkar, D.; Mhaske, P.C. Thiazolyl-pyrazole derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett. 2019, 29, 1199–1202. [Google Scholar] [CrossRef]
- Yang, Y.S.; Zhang, F.; Gao, C.; Zhang, Y.B.; Wang, X.L.; Tang, J.F.; Sun, J.; Gong, H.B.; Zhu, H.L. Discovery and modification of sulfur-containing heterocyclic pyrazoline derivatives as potential novel class of β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 4619–4624. [Google Scholar] [CrossRef]
- Bobade, V.; Gaikwad, N.D.; Patil, S.V. Synthesis and biological evaluation of some novel thiazole substituted benzotriazole derivatives. Bioorg. Med. Chem. 2012, 22, 3449–3454. [Google Scholar]
- Nalawade, V.; Patil, S.V.; Bobade, V.D.; Mhaske, P.C. Synthesis of new thiazolyl-pyrazolyl-1,2,3-triazole derivatives as potential antimicrobial agents. Eur. J. Med. Chem. 2019, 179, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Nalawade, V.; Patil, S.V.; Bobade, V.D.; Mhaske, P.C. Synthesis, Characterization, and Antimicrobial Screening of 4″-methyl-2,2″-diaryl-4,2′:4,5″-terthiazole Derivatives. J. Heterocycl. Chem. 2018, 55, 1366–1374. [Google Scholar] [CrossRef]
- Patil, S.V.; Bondarde, M. An efficient one pot synthesis and antimicrobial activity of some new thiazole substituted pyrazole derivatives. IJCPS 2018, 7, 268–274. [Google Scholar]
- Bakr, F.; Abdel, W.; Rizk, E.K.; Farahat, A.A. Pyrazole-3(4)-carbaldehyde: Synthesis, reactions and biological activity. ARKIVOC Online J. Org. Chem. 2011, 2011, 196–245. [Google Scholar]
- Ilya, V.; Taydakov, S.S.; Tatiana, Y. Improved Synthesis of 1H-Pyrazole-4-carbaldehyde. Synth. Commun. 2011, 41, 2430–2434. [Google Scholar]
Compound | Yield (%) | Time | ||
---|---|---|---|---|
Solvent Free | Conventional | Conventional (h) | Solvent Free (min) | |
4a | 85 | 65 | 4 | 6 |
4b | 81 | 62 | 4.3 | 7 |
4c | 86 | 63 | 4.4 | 6–7 |
4d | 87 | 68 | 3.4 | 3 |
4e | 89 | 70 | 3.2 | 3–4 |
4f | 92 | 72 | 3.4 | 3 |
4g | 90 | 70 | 4 | 3 |
4h | 85 | 69 | 3.1 | 4 |
4i | 88 | 69 | 3.2 | 4 |
4j | 85 | 65 | 4 | 4–5 |
4k | 84 | 67 | 4.1 | 5 |
4l | 86 | 66 | 4.3 | 5 |
Compound | S. aureus | E. coli | B. subtilis | P. aeruginosa | A. niger | C. albicans |
---|---|---|---|---|---|---|
4a | 18.5 | 16.0 | 17.2 | 13.0 | 11.3 | - |
4b | 12.2 | - | 11.1 | 7.5 | - | 4.8 |
4c | 16.4 | 14.0 | - | - | 9.3 | 8.3 |
4d | 18.0 | - | 17.1 | 15.6 | 11.1 | 10.1 |
4e | 11.6 | - | 10.5 | - | 5.9 | - |
4f | - | 12.1 | 14.5 | 10.2 | 8.5 | 7.4 |
4g | 18.2 | 15.3 | - | 15.7 | 10.8 | - |
4h | 12.0 | - | 11.5 | - | 5.6 | - |
4i | 15.0 | 12.3 | - | 10.3 | 8.4 | 7 |
4j | 17.6 | 14.0 | 16.4 | 12.1 | - | 10 |
4k | - | 7.0 | 9.6 | 5.7 | 4.3 | 3.9 |
4l | 15.2 | 13.1 | - | 10.0 | - | 7.5 |
Nystatin | NA | NA | NA | NA | 21.12 | 21.96 |
Chloramphenicol | 32.8 | 29.1 | 30.1 | 24.6 | NA | NA |
Compound | Color | m.p. (°C) | Rf Value/Solvent System (Hexanes: Ethyl Acetate) | Yield (%) |
---|---|---|---|---|
2a | Brown | 140–143 | 0.1/6:4 | 85 |
2b | Pale yellow | 132–135 | 0.15/6:4 | 80 |
2c | Pale yellow | 135–138 | 0.18/6:4 | 84 |
2d | Brown | 126–129 | 0.1/6:4 | 86 |
Compound | Color | m.p. (°C) | Rf Value/Solvent System (Hexanes: Ethyl Acetate) | Yield (%) |
---|---|---|---|---|
3a | Brown | 135–138 | 0.27/7:3 | 78 |
3b | Pale yellow | 147–150 | 0.31/7:3 | 73 |
3c | Pale yellow | 137–140 | 0.2/7:3 | 75 |
3d | Brown | 150–155 | 0.24/7:3 | 77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, S.V.; Suryavanshi, M.B.; Nagargoje, D.R.; Kokate, S.V. Synthesis and Antimicrobial Evaluation of Some New Pyrazole Derivatives Containing Thiazole Scaffolds. Chem. Proc. 2022, 8, 46. https://doi.org/10.3390/ecsoc-25-11661
Patil SV, Suryavanshi MB, Nagargoje DR, Kokate SV. Synthesis and Antimicrobial Evaluation of Some New Pyrazole Derivatives Containing Thiazole Scaffolds. Chemistry Proceedings. 2022; 8(1):46. https://doi.org/10.3390/ecsoc-25-11661
Chicago/Turabian StylePatil, Sachin V., Manjusha B. Suryavanshi, Deepak R. Nagargoje, and Siddhant V. Kokate. 2022. "Synthesis and Antimicrobial Evaluation of Some New Pyrazole Derivatives Containing Thiazole Scaffolds" Chemistry Proceedings 8, no. 1: 46. https://doi.org/10.3390/ecsoc-25-11661
APA StylePatil, S. V., Suryavanshi, M. B., Nagargoje, D. R., & Kokate, S. V. (2022). Synthesis and Antimicrobial Evaluation of Some New Pyrazole Derivatives Containing Thiazole Scaffolds. Chemistry Proceedings, 8(1), 46. https://doi.org/10.3390/ecsoc-25-11661