Synthesis and Antimicrobial Screening of Some New Thiazole Substituted 1,3,4-Oxadiazole Derivatives †
Abstract
:1. Introduction
2. Results and Discussion
3. Biological Results and Discussion
4. Experimental
5. Spectral Data
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hargrave, K.D.; Hess, F.K.; Oliver, J.T. N-(4-substituted-thiazolyl)oxamic acid derivatives, a new series of potent, orally active antiallergy agents. J. Med. Chem. 1983, 26, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.N.; Xavier, F.P. Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: An analogue-based drug design approach. J. Enzym. Inhib. Med. Chem. 2009, 24, 890–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, F.W.; Cantrell, A.S. Phenethylthiazolethiourea (PETT) Compounds, a New Class of HIV-1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PETT Analogs. J. Med. Chem. 1995, 38, 4929–4936. [Google Scholar] [CrossRef]
- Carter, J.S.; Kramer, S.; Zweifel, B. Synthesis and activity of sulfonamide-substituted 4,5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett. 1999, 9, 1171–1174. [Google Scholar] [CrossRef]
- Rudolph, J.; Geschke, F.U. Seco-Cyclothialidines: New Concise Synthesis, Inhibitory Activity toward Bacterial and Human DNA Topoisomerases, and Antibacterial Properties. J. Med. Chem. 2001, 44, 619–626. [Google Scholar] [CrossRef]
- Hutchinson, I.; Jennings, S.A.; Vishnuvajjala, B.R.; Westwell, A.D.; Stevens, M.F.G. Antitumor Benzothiazoles. 16.1 Synthesis and Pharmaceutical Properties of Antitumor 2-(4-Aminophenyl)benzothiazole Amino Acid Prodrugs. J. Med. Chem. 2002, 45, 744–747. [Google Scholar] [CrossRef]
- Ojika, M.; Suzuki, Y.; Tsukamoto, A.; Sakagami, Y.; Fudou, R.; Yoshimura, T.; Yamanaka, S. Cystothiazoles A and B, new bithiazole-type antibiotics from the myxobacterium Cystobacter fuscus. J. Antibiot. 1998, 51, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Kalkhambkar, R.G.; Kulkarni, G.M.; Shivkumar, H.; Rao, N.R. Synthesis of novel triheterocyclic thiazoles as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2007, 42, 1272–1276. [Google Scholar] [CrossRef]
- Franklin, P.X.; Pillai, A.D.; Rathod, P.D.; Yerande, S.; Nivsarkar, M.; Padh, H.; Vasu, K.K.; Sudarsanam, V. 2-Amino-5-thiazolyl motif: A novel scaffold for designing anti-inflammatory agents of diverse structures. Eur. J. Med. Chem. 2008, 43, 129–134. [Google Scholar] [CrossRef]
- Shelke, S.H.; Mhaske, P.C.; Nandave, M.; Narkhade, S.; Walhekar, N.M.; Bobade, V.D. Synthesis and pharmacological evaluation of a novel series of 3-aryl-2-(2-substituted-4-methylthiazole-5-yl)thiazolidin-4-one as possible anti-inflammatory and antimicrobial agents. Bioorg. Med. Chem. Lett. 2012, 22, 6373–6376. [Google Scholar] [CrossRef]
- Bekhit, A.A.; Ashour, H.M.A.; Ghany, Y.S.A.; Bekhit, A.E.A.; Baraka, A. Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. Eur. J. Med. Chem. 2008, 43, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zink, D.L.; Ushio, M.; Burgess, B.; Onishi, R.; Masurekar, P.; Barrett, J.F.; Singh, S.B. Isolation, structure, and antibacterial activity of thiazomycin A, a potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa. Bioorg. Med. Chem. 2008, 16, 8818–8823. [Google Scholar] [CrossRef] [PubMed]
- Shelke, S.H.; Mhaske, P.C.; Hande, P.; Bobade, V.D. Synthesis and Antimicrobial Activities of Novel Series of 1-((4-Methyl-2-Substituted Thiazol-5-yl)Methyleneam INO)-2-Substituted Isothiourea Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 1262–1270. [Google Scholar] [CrossRef]
- Shiradkar, M.R.; Murahari, K.K.; Gangadasu, H.R.; Tatikonda, S.; Chakravarthy, A.K.; Dolly, P.; Kaur, R.; Burange, P.; Ghogare, J.; Mokalec, V.; et al. Synthesis of new S-derivatives of clubbed triazolyl thiazole as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem. 2007, 15, 3997–4008. [Google Scholar] [CrossRef] [PubMed]
- Macaev, F.; Rusu, G.; Pogrebnoi, S.; Gudima, A.; Stingaci, E.; Vlad, L.; Shvets, N.; Kandemirli, F.; Dimoglo, A.; Reynolds, R. Synthesis of novel 5-aryl-2-thio-1,3,4-oxadiazoles and the study of their structure-anti-mycobacterial activities. Bio-Org. Med. Chem. 2005, 13, 4842–4850. [Google Scholar] [CrossRef] [PubMed]
- Zitouni, G.T.; Ozdemir, A.; Kaplancikli, Z.A.; Benkli, K.; Chevallet, P.; Akalin, G. Synthesis and antituberculosis activity of new thiazolylhydrazone derivatives. Eur. J. Med. Chem. 2008, 43, 981–985. [Google Scholar] [CrossRef]
- Li, Z.; Khaliq, M.; Zhou, Z.; Post, C.B.; Kuhn, R.J.; Cushman, M. Design, Synthesis, and Biological Evaluation of Antiviral Agents Targeting Flavivirus Envelope Proteins. J. Med. Chem. 2008, 51, 4660–4671. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, J.; Chen, L.; Majumdar, D.; Bullock, W.H.; Burns, M.; Claus, T.; Dela Cruz, F.E.; Daly, M.; Ehrgott, F.J.; Johnson, J.S.; et al. Indanylacetic Acid Derivatives Carrying 4-Thiazolyl-phenoxy Tail Groups, a New Class of Potent PPAR α/γ/δ Pan Agonists: Synthesis, Structure−Activity Relationship, and In Vivo Efficacy. J. Med. Chem. 2007, 50, 984–1000. [Google Scholar] [CrossRef]
- Siddiqui, N.; Arshad, M.F.; Ahsan, W. Thiazoles: A valuable insight into the recent advances and biological activities. Int. J. Pharm. Sci. Drug Res. 2009, 1, 136–143. [Google Scholar]
- Vasu, N.; Goud, B.B.; Kumari, Y.B.; Rajitha, B. Design, synthesis and biological evaluation of some novel benimidazole based thiazolyl amines. Rasayan. J. Chem. 2013, 6, 201–206. [Google Scholar]
- Singh, N.; Bhati, S.K.; Kumar, A. Thiazolyl/oxazolyl formazanyl indoles as potent anti-inflammatory agents. Eur. J. Med. Chem. 2008, 43, 2597–2609. [Google Scholar] [CrossRef] [PubMed]
- Luzina, E.L.; Popov, A.V. Synthesis and anticancer activity of N-bis(trifluoromethyl)alkyl-N’-thiazolyl and N-bis(trifluoromethyl)alkyl-N’-benzothiazolyl ureas. Eur. J. Med. Chem. 2009, 44, 4944–4953. [Google Scholar] [CrossRef] [PubMed]
- Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; Clercq, E. Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Eur. J. Med. Chem. 2008, 43, 2800–2806. [Google Scholar] [CrossRef] [PubMed]
- Satoh, A.; Nagatomi, Y.; Hirata, Y.; Ito, S.; Suzuki, G.; Kimura, T.; Maehara, S.; Hikichi, H.; Satow, A.; Hata, M.; et al. Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist. Bioorg. Med. Chem. Lett. 2009, 19, 5464–5468. [Google Scholar] [CrossRef] [PubMed]
- Lesyk, R.; Vladzimirska, O.; Holota, S.; Zaprutko, L.; Gzella, A. New 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones: Synthesis and anticancer evaluation. Eur. J. Med. Chem. 2007, 42, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Zaprutko, L.; Gzella, A.; Lesyk, R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur. J. Med. Chem. 2009, 44, 1396–1404. [Google Scholar] [CrossRef]
- Kaminskyy, D.; Zimenkovsky, B.; Lesyk, R. Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives. Eur. J. Med. Chem. 2009, 44, 3627–3636. [Google Scholar] [CrossRef]
- Mullican, M.D.; Wilson, M.W.; Connor, D.T. Design of 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-1,3,4-thiadiazoles, -1,3,4-oxadiazoles, and -1,2,4-triazoles as orally active, nonulcerogenic antiinflammatory agents. J. Med. Chem. 1993, 36, 1090–1099. [Google Scholar] [CrossRef]
- Zareef, M.; Iqbal, R.; Al-Masoudi, N.A. Synthesis, Anti–HIV, and Antifungal Activity of New Benzensulfonamides Bearing the 2,5-Disubstituted-1,3,4-Oxadiazole Moiety. Phosphorus Sulfur Silicon 2007, 182, 281–298. [Google Scholar] [CrossRef]
- Mulvad, V.V.; Chaskar, A.C. Synthesis and antibacterial activity of new oxadiazolo[1,3,5]-triazine 1,2,4-triazolo 1,3,4-oxadiazole derivatives. Ind. J. Chem. 2006, 45B, 1710–1715. [Google Scholar]
- Kambale, R.R.; Sudha, B.S. Synthesis and pharmacological screening of 5-methyl-3-[P-(6′-aryl-2′-thioxo-1′,2′,5′,6′-tetrahydro-pyrimidin-4′-yl)-phenyl]-3 H-2-oxo-D4-1,3,4-oxadiazoles. Ind. J. Pharm. Sci. 2006, 68, 249–253. [Google Scholar] [CrossRef]
- Navarrete-Vazquez, G.; Vargas-Villarreal, J. Synthesis and antimycobacterial activity of 4-(5-substituted-1,3,4-oxadiazol-2-yl)pyridines. J. Bioorg. Med. Chem. 2007, 15, 5502–5508. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.V.; Bothara, K.G. Design, Synthesis and Evaluation of Antiinflammatory, Analgesic and Ulcerogenicity studies of Novel S-Substituted phenacyl-1,3,4-oxadiazole-2-thiol and Schiff bases of Diclofenac acid as Nonulcerogenic Derivatives. Bioorg. Med. Chem. 2008, 16, 1822–1831. [Google Scholar] [CrossRef]
- Zarghi, A.; Faizi, M.; Shafaghi, B. Design and synthesis of new 2-substituted-5-(2-benzylthiophenyl)-1,3,4-oxadiazoles as benzodiazepine receptor agonists. Bioorg. Med. Chem. Lett. 2005, 15, 3126–3129. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Yang, S.G.; Jiang, L.L.; Hao, G.F.; Wang, Z.F.; Wu, Q.Y.; Xi, Z.; Yang, G.F. Synthesis and antitumor activities of novel hybrid molecules containing 1,3,4-oxadiazole and 1,3,4-thiadiazole bearing Schiff base moiety. Bioorg. Med. Chem. 2012, 20, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.V.S.; Rajendraprasad, Y.; Mallikarjuna, B.P.; Chandrashekar, S.M.; Kistayya, C. Synthesis of some novel 2-substituted-5-[isopropylthiazole] clubbed 1,2,4-triazole and 1,3,4-oxadiazoles as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem. 2010, 45, 2063–2074. [Google Scholar] [CrossRef]
- Bondock, S.; Adel, S.; Etman, H.A.; Badria, F.A. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles. Eur. J. Med. Chem. 2012, 48, 192–199. [Google Scholar] [CrossRef]
- Mhaske, P.C.; Shelke, S.H.; Bhoye, M.; Bobade, V.D. Synthesis and Antimicrobial Screening of 2-Aryl-5-((2-arylthiazol-4-yl)methyl)-1,3,4-oxadiazole Derivatives. J. Het. Chem. 2017, 54, 1590–1597. [Google Scholar] [CrossRef]
- Yeeman, K.R.; Lei, Z. Synthesis and biological evaluation of 2,4-diaminoquinazoline derivatives as novel heat shock protein 90 inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 1593–1597. [Google Scholar]
- Mallikarjuna, B.P.; Sastry, B.S. Synthesis of new 4-isopropylthiazole hydrazide analogs and some derived clubbed triazole, oxadiazole ring systems—A novel class of potential antibacterial, antifungal and antitubercular agents. Eur. J. Med. Chem. 2009, 44, 4739–4746. [Google Scholar] [CrossRef]
- Kiselyov, A.S.; Semenova, M.N. Novel derivatives of 1,3,4-oxadiazoles are potent mitostatic agents featuring strong microtubule depolymerizing activity in the sea urchin embryo and cell culture assays. Eur. J. Med. Chem. 2010, 45, 1683–1697. [Google Scholar] [CrossRef] [PubMed]
- Mruthynjayswami, B.H.M.; Basararajaiah, S.M.B. Synthesis and antimicrobial activity of novel ethyl-5-(ethoxycarbonyl)-4-methyl thiazol-2-yl carbamate compounds. Ind. J. Chem. 2009, 48B, 1274–1278. [Google Scholar]
Compound | S. aureus | E. coli | B. subtilis | P. aeruginosa | A. niger | C. albicans |
---|---|---|---|---|---|---|
4a | 11.5 | 10 | - | 9.6 | 9.65 | 12.5 |
4b | 10.9 | 8.85 | 9.12 | - | 8.9 | 11.6 |
5a | 20 | 19 | - | 13.1 | 12.54 | 14 |
5b | 17.8 | - | - | 12 | - | 12.5 |
5c | 15.4 | 16.1 | - | 10.5 | 9.4 | 12 |
5d | 14.6 | 14.8 | - | 10 | 9 | 11.5 |
5e | 21.5 | - | 18.3 | - | 14.51 | 16.5 |
5f | 18.5 | 17.5 | 15.4 | - | - | 14.7 |
5g | - | 16 | 15 | - | 11.6 | - |
5h | 15.3 | 14.8 | 14.6 | - | 10.3 | 12.4 |
Nystatin | NA | NA | NA | NA | 21.12 | 21.96 |
Chloramphenicol | 32.8 | 29.14 | 30.11 | 24.68 | NA | NA |
Compound | Color | M.P. (°C) | Rf Value/Solvent System (Ethyl Acetate/Hexane:s) | Yield (%) |
---|---|---|---|---|
4a | Grey | 184–186 | 0.12/7:3 | 71 |
4b | Grey | 218–220 | 0.13/7:3 | 75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokate, S.V.; Patil, S.V. Synthesis and Antimicrobial Screening of Some New Thiazole Substituted 1,3,4-Oxadiazole Derivatives. Chem. Proc. 2022, 8, 12. https://doi.org/10.3390/ecsoc-25-11662
Kokate SV, Patil SV. Synthesis and Antimicrobial Screening of Some New Thiazole Substituted 1,3,4-Oxadiazole Derivatives. Chemistry Proceedings. 2022; 8(1):12. https://doi.org/10.3390/ecsoc-25-11662
Chicago/Turabian StyleKokate, Siddhant V., and Sachin V. Patil. 2022. "Synthesis and Antimicrobial Screening of Some New Thiazole Substituted 1,3,4-Oxadiazole Derivatives" Chemistry Proceedings 8, no. 1: 12. https://doi.org/10.3390/ecsoc-25-11662
APA StyleKokate, S. V., & Patil, S. V. (2022). Synthesis and Antimicrobial Screening of Some New Thiazole Substituted 1,3,4-Oxadiazole Derivatives. Chemistry Proceedings, 8(1), 12. https://doi.org/10.3390/ecsoc-25-11662