Room Temperature Hydrogen Sensing Based on Tapered Optical Fiber Coated with Polyaniline (PANI) †
Abstract
:1. Introduction
2. Experiments
2.1. Tapered Optical Fiber Fabrication
2.2. PANI Functionalization on Tapered Optical Fiber
2.3. Materials Characterization
3. Results and Discussion
4. H2 Mechanism of PANI Coated on Tarped Optical Fiber
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hübert, T.; Detjens, M.; Tiebe, C. Response Time Measurement of Hydrogen Sensors. In Proceedings of the 7th International Conference on Hydrogen Safety, Hamburg, Germany, 11–13 September 2017; pp. 1–11. [Google Scholar]
- Bychkov, A.L.; Korobeynikov, S.M.; Ryzhkina, A.Y. Determination of the Hydrogen Diffusion Coefficient in Transformer Oil. Tech. Phys. 2011, 56, 421–422. [Google Scholar] [CrossRef]
- Islam, M.M.; Lee, G.; Hettiwatte, S.N. A Review of Condition Monitoring Techniques and Diagnostic Tests for Lifetime Estimation of Power Transformers. Electr. Eng. 2018, 100, 581–605. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.P.; Kumar, D.; Agarwal, A.K. Particulate Characteristics of Laser Ignited Hydrogen Enriched Compressed Natural Gas Engine. Int. J. Hydrogen Energy 2020, 45, 18021–18031. [Google Scholar] [CrossRef]
- Pospíšilová, M.; Kuncová, G.; Trögl, J. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. Sensors 2015, 15, 25208–25259. [Google Scholar] [CrossRef] [PubMed]
- Rajan, G. Optical Fiber Sensors: Advanced Techniques and Applications; CRC Press: Boca Raton, FL, USA, 2015; ISBN 1482228297. [Google Scholar]
- Zou, Y.; Pisciotta, J.; Baskakov, I.V. Nanostructured Polypyrrole-Coated Anode for Sun-Powered Microbial Fuel Cells. Bioelectrochemistry 2010, 79, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, D.N.; Yang, M.; Cheng, J.; Li, J. In-Line Mach-Zehnder Interferometer and FBG with Pd Film for Simultaneous Hydrogen and Temperature Detection. Sens. Actuators B Chem. 2014, 202, 893–896. [Google Scholar] [CrossRef]
- Yu, L.; Gan, M.; Ma, L.; Huang, H.; Hu, H.; Li, Y.; Tu, Y.; Ge, C.; Yang, F.; Yan, J. Facile Synthesis of MnO2/Polyaniline Nanorod Arrays Based on Graphene and Its Electrochemical Performance. Synth. Met. 2014, 198, 167–174. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A.; Zaborski, M. Polymer-Based Sensors: A Review. Polym. Test. 2018, 67, 342–348. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, F.; Jiang, Y.; Wang, L.; Zhou, C.; Wang, H. Layer-by-Layer Construction of Caterpillar-like Reduced Graphene Oxide–Poly (Aniline-Co-o-Aminophenol)–Pd Nanofiber on Glassy Carbon Electrode and Its Application as a Bromate Sensor. Electrochim. Acta 2014, 115, 504–510. [Google Scholar] [CrossRef]
- Zheng, Z.; Du, Y.; Feng, Q.; Wang, Z.; Wang, C. Facile Method to Prepare Pd/Graphene–Polyaniline Nanocomposite and Used as New Electrode Material for Electrochemical Sensing. J. Mol. Catal. A Chem. 2012, 353, 80–86. [Google Scholar] [CrossRef]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced Micro-and Nano-Gas Sensor Technology: A Review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahad, I.Z.M.; Harun, S.W.; Gan, S.N.; Phang, S.W. Application of Fiber Bragg Grating Sensor Coated with Polyaniline as an Optical Sensor for Chloroform Detection. Polym. Polym. Compos. 2017, 25, 555–562. [Google Scholar] [CrossRef]
- Khalaf, A.L.; Mohamad, F.S.; Arasu, P.T.; Shabaneh, A.A.; Abdul Rahman, N.; Lim, H.N.; Paiman, S.; Yusof, N.A.; Mahdi, M.A.; Yaacob, M.H. Modified Plastic Optical Fiber Coated Graphene/Polyaniline Nanocompositefor Ammonia Sensing. In Proceedings of the 2016 IEEE 6th International Conference on Photonics, ICP 2016, Kuching, Malaysia, 14–16 March 2016; pp. 31–33. [Google Scholar] [CrossRef]
- Alkhabet, M.M.; Girei, S.H.; Paiman, S.; Arsad, N.; Mahdi, M.A.; Yaacob, M.H. Highly Sensitive Hydrogen Sensor Based on Palladium-Coated Tapered Optical Fiber at Room Temperature. Eng. Proc. 2020, 2, 8. [Google Scholar]
- Andika, A.I.W.; Hafizah, M.A.E.; Manaf, A. Electrical Conductivity and Microwave Characteristics of HCl and HClO4-Doped Polyaniline Synthesized through Chemical Oxidative Continuous Polymerization Process at Various Polymerization Temperatures. In Proceedings of the AIP Conference Proceedings; AIP Publishing LLC: Depok, Indonesia, 2018; Volume 2023, p. 20027. [Google Scholar]
- Mogre, P. Synthesis and Characterization Studies of Polyaniline Nano Fibres. Adv. Mater. Proc. 2018, 3, 178–180. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Wang, X.; Guo, J.; Liu, P. Effect of the Oxidant/Monomer Ratio and the Washing Post-Treatment on Electrochemical Properties of Conductive Polymers. Ind. Eng. Chem. Res. 2014, 53, 13680–13689. [Google Scholar] [CrossRef]
- Jarad, A.N. Synthesis and Characterization of Conductive Polyaniline Using 24 Hours Chemical Oxidative Process for Organic Solar Cells. Ph.D. Thesis, Universiti Sains Malaysia, George Town, Malaysia, 2017. [Google Scholar]
- Al-Daghman, A.N.J. Optical Characteristics of Conductive Polymer Polyaniline PANI-EB. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 1555–1560. [Google Scholar] [CrossRef]
- Karaoğlan, N.; Bindal, C. Synthesis and Optical Characterization of Benzene Sulfonic Acid Doped Polyaniline. Eng. Sci. Technol. Int. J. 2018, 21, 1152–1158. [Google Scholar] [CrossRef]
- Arasu, P.T.; Noor, A.S.M.; Khalaf, A.L.; Yaacob, M.H. Highly Sensitive Plastic Optical Fiber with Palladium Sensing Layer for Detection of Hydrogen Gas. In Proceedings of the 2016 IEEE Region 10 Symposium, TENSYMP 2016, Bali, Indonesia, 9–11 May 2016; pp. 390–393. [Google Scholar] [CrossRef]
- González-Sierra, N.E.; Gómez-Pavón, L.d.C.; Pérez-Sánchez, G.F.; Luis-Ramos, A.; Zaca-Morán, P.; Muñoz-Pacheco, J.M.; Chávez-Ramírez, F. Tapered Optical Fiber Functionalized with Palladium Nanoparticles by Drop Casting and Laser Radiation for H2 and Volatile Organic Compounds Sensing Purposes. Sensors 2017, 17, 2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.F.; Blum, F.D.; Bertino, M.F.; Kim, C.S. Amplified Response and Enhanced Selectivity of Metal-PANI Fiber Composite Based Vapor Sensors. Sens. Actuators B Chem. 2012, 161, 390–395. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhabet, M.M.; Girei, S.H.; Ismail, A.H.; Paiman, S.; Arsad, N.; Mahdi, M.A.; Yaacob, M.H. Room Temperature Hydrogen Sensing Based on Tapered Optical Fiber Coated with Polyaniline (PANI). Chem. Proc. 2021, 5, 85. https://doi.org/10.3390/CSAC2021-10415
Alkhabet MM, Girei SH, Ismail AH, Paiman S, Arsad N, Mahdi MA, Yaacob MH. Room Temperature Hydrogen Sensing Based on Tapered Optical Fiber Coated with Polyaniline (PANI). Chemistry Proceedings. 2021; 5(1):85. https://doi.org/10.3390/CSAC2021-10415
Chicago/Turabian StyleAlkhabet, Mohammed Majeed, Saad Hayatu Girei, Abdul Hadi Ismail, Suriati Paiman, Norhana Arsad, Mohd Adzir Mahdi, and Mohd Hanif Yaacob. 2021. "Room Temperature Hydrogen Sensing Based on Tapered Optical Fiber Coated with Polyaniline (PANI)" Chemistry Proceedings 5, no. 1: 85. https://doi.org/10.3390/CSAC2021-10415
APA StyleAlkhabet, M. M., Girei, S. H., Ismail, A. H., Paiman, S., Arsad, N., Mahdi, M. A., & Yaacob, M. H. (2021). Room Temperature Hydrogen Sensing Based on Tapered Optical Fiber Coated with Polyaniline (PANI). Chemistry Proceedings, 5(1), 85. https://doi.org/10.3390/CSAC2021-10415