The Performance of Organophosphate Pesticides Determination Using Biosensor Based on Small Device Potentiometer as a Transducer †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meterials
2.2. Apparatus
2.3. Electrolysis of Ag/AgCl
2.4. Preparation of Au Electrode Biosensor
2.5. Measurement of the Potential Value Biosensor
2.6. The performance Test of Biosensor
2.6.1. Sensitivity
2.6.2. Limit of Detection (LoD)
2.6.3. Selectivity
2.6.4. Accuracy
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Jiang, Z.; Jin, M.; Du, P.; Chen, G.; Cui, X.; Zhang, Y.; Qin, G.; Yan, F.; Abd El-Aty, A.M.; et al. Fluorescence immunoassay for multiplex detection of organophosphate pesticides in agro-products based on signal amplification of gold nanoparticles and oligonucleotides. Food Chem. 2020, 326, 126813. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zhou, B.; Wang, X.; Shen, J.; Zhao, B. Detection of organophosphorus pesticides by nanogold/mercaptomethamidophos multi-residue electrochemical biosensor. Food Chem. 2021, 354. [Google Scholar] [CrossRef]
- Singh, A.P.; Balayan, S.; Hooda, V.; Sarin, R.K.; Chauhan, N. Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. Int. J. Biol. Macromol. 2020, 164, 3943–3952. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, N.; Goel, S.; Jaiswal, S. On-site sensing of pesticides using point-of-care biosensors: A review. Environ. Chem. Lett. 2021, 19, 345–354. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef]
- Bacciu, A.; Arrigo, P.; Delogu, G.; Marceddu, S.; Monti, P.; Rocchitta, G.; Serra, P.A. A new perspective on using glycols in glutamate biosensor design: From stabilizing agents to a new containment net. Chemosensors 2020, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Eggins, B.R. Chemical Sensors and Biosensors, 1st ed.; Johiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Joseph, W. Analytical Electrochemistry, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kumar, H.; Kumari, N.; Sharma, R. Nanocomposites (conducting polymer and nanoparticles) based electrochemical biosensor for the detection of environment pollutant: Its issues and challenges. Environ. Impact Assess. Rev. 2020, 85, 106438. [Google Scholar] [CrossRef]
- Karadurmus, L.; Kaya, S.I.; Ozkan, S.A. Recent advances of enzyme biosensors for pesticide detection in foods. J. Food Meas. Charact. 2021, 15, 4582–4595. [Google Scholar] [CrossRef]
- Hu, H.; Yang, L. Development of enzymatic electrochemical biosensors for organophosphorus pesticide detection. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2020, 56, 168–180. [Google Scholar] [CrossRef]
- Du, D.; Huang, X.; Cai, J.; Zhang, A. Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sens. Actuators B Chem. 2007, 127, 531–535. [Google Scholar] [CrossRef]
- Simonian, A.L.; Good, T.A.; Wang, S.S.; Wild, J.R. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal. Chim. Acta 2005, 534, 69–77. [Google Scholar] [CrossRef]
- Hassani, S.; Momtaz, S.; Vakhshiteh, F.; Maghsoudi, A.S.; Ganjali, M.R.; Norouzi, P.; Abdollahi, M. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch. Toxicol. 2017, 91, 109–130. [Google Scholar] [CrossRef] [PubMed]
- Mashuni; Ritonga, H.; Hamid, F.H.; Widiyani, M.; Jahiding, M. Analysis of bio-oil effectiveness from coconut shells pyrolysis as biopesticide by potentiometric biosensor. J. Phys. 2021, 1825, 012095. [Google Scholar] [CrossRef]
- Fernando, P.U.A.I.; Glasscott, M.W.; Pokrzywinski, K.; Fernando, B.M.; Kosgei, G.K.; Moores, L.C. Analytical Methods Incorporating Molecularly Imprinted Polymers (MIPs) for the Quantification of Microcystins: A Mini-Review. Crit. Rev. Anal. Chem. 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Timur, S.; Telefoncu, A. Acetylcholinesterase (AChE) electrodes based on gelatin and chitosan matrices for the pesticide detection. Artif. Cells Blood Substit. Biotechnol. 2004, 32, 427–442. [Google Scholar] [CrossRef]
- Patel, H.; Rawtani, D.; Agrawal, Y.K. Trends in Food Science & Technology A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using Acetylcholinesterase—A review. Trends Food Sci. Technol. 2019, 85, 78–91. [Google Scholar]
- Mashuni; Ramadhan, L.O.A.N.; Jahiding, M.; Herniati. Analysis of diazinon pesticide using potentiometric biosensor based on enzyme immobilized cellulose acetate membrane in gold electrode. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Solo, Indonesia, 2016; Volume 107, pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mashuni; Ramadhan, L.O.A.N.; Jahiding, M.; Syarfiah. Design of Pesticide Biosensor Using Glutaraldehyde Crosslinked-Cellulose Acetate Membrane in Gold Electrode. In Journal of Chemical, Environmental & Biological Sciences; Hakim, L., Ed.; Brawijaya University: Malang, Indonesia, 2016; Volume 4, pp. 147–151. [Google Scholar]
- Christian, G.D.; Dasgupta, P.K.; Kevin, A.S. Analytical Chemistry, 7th ed.; Wiley: Haboken, NJ, USA, 2014; ISBN 9780470887578. [Google Scholar]
- Choudhury, S.; Roy, S.; Bhattacharya, G.; Fishlock, S.; Deshmukh, S.; Bhowmick, S.; McLaughlign, J.; Roy, S.S. Potentiometric ion-selective sensors based on UV-ozone irradiated laser-induced graphene electrode. Electrochim. Acta 2021, 387, 138341. [Google Scholar] [CrossRef]
- Mashuni; Syahrul, M.; Ahmad, A.; Wahab, A.W. Pengaruh Konsentrasi Glutaraldehid pada Komposisi Membran Elektroda Biosensor Pestisida Karbamat. Indones. Chim. Acta 2010, 3, 8–14. [Google Scholar]
- Azizah, A.; Mulyasuryani, A. Sutrisno Biosensor Konduktometri Berbasis SPCE-Kitosan Untuk Mendeteksi Diazinon dan Malathion. Kim. Stud. J. 2014, 1, 50–56. [Google Scholar]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Rong, Y.; Li, H.; Hu, Y.; Chen, Q. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chem. 2021, 349. [Google Scholar] [CrossRef]
- Raymundo-Pereira, P.A.; Gomes, N.O.; Shimizu, F.M.; Machado, S.A.S.; Oliveira, O.N. Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors. Chem. Eng. J. 2021, 408. [Google Scholar] [CrossRef]
- Bozyiğit, G.D.; Ayyıldız, M.F.; Chormey, D.S.; Engin, G.O.; Bakırdere, S. Development of a sensitive and accurate method for the simultaneous determination of selected insecticides and herbicide in tap water and wastewater samples using vortex-assisted switchable solvent-based liquid-phase microextraction prior to determination. Environ. Monit. Assess. 2020, 192, 1–8. [Google Scholar] [CrossRef] [PubMed]
Substrate Concentration (M) | Inhibitor Concentration (mg L−1) | Potential Value | |
---|---|---|---|
Diazinon | Profenofos | ||
10−3 | 10−1 | 50 | 50.7 |
10−2 | 64.8 | 69.3 | |
10−3 | 89.5 | 86.1 | |
10−4 | 121.1 | 104.2 | |
10−5 | 135.7 | 126.5 | |
10−6 | 159.9 | 148.7 | |
10−7 | 175.8 | 169.4 | |
10−8 | 192.9 | 189.6 | |
Potential value of substrate (mV) | 199.8 | 195.7 | |
Potential value of blank (mV) | 199.1 | 196,3 | |
Potential value of 10−8 mg L−1 (mV) | 195.5 | 194.6 | |
Sensitivity (mV decade−1) | 21.204 | 21.035 | |
Linear regression equation (R2) | 0.992 | 0.998 | |
LoD (mg L−1) | 10−7 | 10−7 |
[Diazinon] (mg L−1) | [Profenofos] (mg L −1) | Potential Value (mV) | Selectivity | ||||
---|---|---|---|---|---|---|---|
Diazinon | Profenofos | ||||||
ai (1) | aj (1) | ai (2) | aj (2) | Ki,j (1) | Ki,j (2) | ||
10−5 | 0 | 160 | 0 | 126.5 | 0 | 0 | 0 |
10−9 | 159.5 | 127.9 | −0.24 | 0.64 | |||
10−8 | 158.9 | 126.1 | −0.53 | −0.19 | |||
10−7 | 158.6 | 125.9 | −0.67 | −0.29 | |||
10−6 | 158.1 | 124.7 | −0.91 | −0.87 | |||
10−5 | 157.4 | 124.5 | −1.26 | −0.96 | |||
10−4 | 0 | 131.1 | 0 | 104.2 | 0 | 0 | 0 |
10−9 | 130.5 | 106.3 | −0.29 | 0.96 | |||
10−8 | 130.1 | 105.7 | −0.48 | 0.68 | |||
10−7 | 129.8 | 104.8 | −0.63 | 0.27 | |||
10−6 | 129.5 | 103.3 | −0.77 | −0.43 | |||
10−5 | 129.1 | 102.2 | −0.97 | −0.97 | |||
10−3 | 0 | 90 | 0 | 80.1 | 0 | 0 | 0 |
10−9 | 89.8 | 82.2 | −0.1 | 0.95 | |||
10−8 | 89 | 81.9 | −0.49 | 0.81 | |||
10−7 | 88.7 | 80.5 | −0.63 | 0.17 | |||
10−6 | 88.2 | 79.6 | −0.88 | −0.25 | |||
10−5 | 88 | 78.1 | −0.98 | −0.98 |
[C’A] | [CA] | [CF] | Potential Value (mV) | Accuracy, % Recovery | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Diazinon | Profenofos | Diazinon | Profenofos | |||||||
[C’A] | [CA] | [CF] | [C’A] | [CA] | [CF] | |||||
10−2 | 10−3 | 10−2 | 64.8 | 131.1 | 79.1 | 80.4 | 118.6 | 76.9 | 79.123 | 76.899 |
10−3 | 10−3 | 90.0 | 84.8 | 118.6 | 99.2 | 84.790 | 99.232 | |||
10−4 | 10−4 | 131.1 | 107.7 | 130.8 | 108.2 | 107.690 | 108.165 | |||
Mean of % Recovery | 99.497 | 94.765 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashuni, M.; Ritonga, H.; Jahiding, M.; Ramadhan, L.O.A.N.; Kurniawati, D.; Hamid, F.H. The Performance of Organophosphate Pesticides Determination Using Biosensor Based on Small Device Potentiometer as a Transducer. Chem. Proc. 2021, 5, 69. https://doi.org/10.3390/CSAC2021-10604
Mashuni M, Ritonga H, Jahiding M, Ramadhan LOAN, Kurniawati D, Hamid FH. The Performance of Organophosphate Pesticides Determination Using Biosensor Based on Small Device Potentiometer as a Transducer. Chemistry Proceedings. 2021; 5(1):69. https://doi.org/10.3390/CSAC2021-10604
Chicago/Turabian StyleMashuni, Mashuni, Halimahtussaddiyah Ritonga, Muhammad Jahiding, La Ode Ahmad Nur Ramadhan, Desy Kurniawati, and Fitri Handayani Hamid. 2021. "The Performance of Organophosphate Pesticides Determination Using Biosensor Based on Small Device Potentiometer as a Transducer" Chemistry Proceedings 5, no. 1: 69. https://doi.org/10.3390/CSAC2021-10604
APA StyleMashuni, M., Ritonga, H., Jahiding, M., Ramadhan, L. O. A. N., Kurniawati, D., & Hamid, F. H. (2021). The Performance of Organophosphate Pesticides Determination Using Biosensor Based on Small Device Potentiometer as a Transducer. Chemistry Proceedings, 5(1), 69. https://doi.org/10.3390/CSAC2021-10604