Heterocyclic Aldehydes Based on Thieno[3,2-b]thiophene Core: Synthesis and Preliminary Studies as Ion Optical Chemosensors †
Abstract
:1. Introduction
2. Experimental Section
2.1. Methods and Materials
2.2. Synthesis of Thieno[3,2-b]thiophene-2-Carbaldehyde (1)
2.3. Synthesis of 5-Bromothieno[3,2-b]thiophene-2-Carbaldehyde (2)
2.4. General Procedure for the Synthesis of Heterocyclic Aldehydes by Suzuki Cross-Coupling Reaction 3a–b
2.4.1. Synthesis of 4-N,N-Dimethylaminophenylthieno[3,2-b]thiophene-2-Carbaldehyde (3a)
2.4.2. Synthesis of 5-Phenylthieno[3,2-b]thiophene-2-Carbaldehyde (3b)
2.5. Preliminary Chemosensing Studies of Heterocyclic Aldehydes 3a–b
3. Results and Discussion
3.1. Synthesis of Intermediates 1 and 2 and Heterocyclic Aldehydes 3a–b
3.2. Preliminary Chemosensing Studies of Heterocyclic Aldehydes 3a–b
4. Conclusions
Funding
Conflicts of Interest
References
- Meth-Cohn, O.; Stanforth, S.P. The Vilsmeier–Haack reaction. In Comprehensive Organic Synthesis; Elsevier: Amsterdam, The Netherlands, 1991; pp. 777–794. [Google Scholar] [CrossRef]
- Bird, C.W. Comprehensive Heterocyclic Chemistry II; Pergamon: Oxford, UK, 1996. [Google Scholar]
- Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis; Elsevier: London, UK, 2005. [Google Scholar]
- Rajput, S. The Synthesis of Heterocycles: Synthesis and Formylation of Heterocycles Using Vilsmeier-Haack Reaction; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2017. [Google Scholar]
- Smith, M.B.; March, J. March’s Advanced Organic Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Raposo, M.M.; Herbivo, C.; Hugues, V.; Clermont, G.; Castro, M.C.R.; Comel, A.; Blanchard-Desce, M. Synthesis, fluorescence, and two-photon absorption properties of push-pull 5-arylthieno[3,2-b]thiophene derivatives. Eur. J. Org. Chem. 2016, 31, 5263–5273. [Google Scholar] [CrossRef]
- Okda, H.E.; El Sayed, S.; Ferreira, R.C.M.; Gonçalves, R.C.R.; Costa, S.P.G.; Raposo, M.M.M.; Martínez-Máñez, R.; Sancenón, F. N,N-Diphenylanilino-heterocyclic aldehyde-based chemosensors for UV-vis/NIR and fluorescence Cu(II) detection. New J. Chem. 2019, 43, 7393–7402. [Google Scholar] [CrossRef]
- Fernandes, S.S.M.; Castro, M.C.R.; Mesquita, I.; Andrade, L.; Mendes, A.; Raposo, M.M.M. Synthesis and characterization of novel thieno[3,2-b]thiophene based metal-free organic dyes with different heteroaromatic donor moieties as sensitizers for dye-sensitized solar cells. Dyes Pigments 2017, 136, 46–53. [Google Scholar] [CrossRef]
- Esteves, C.I.C.; Batista, R.M.F.; Raposo, M.M.M.; Costa, S.P.G. Novel functionalized imidazo-benzocrown ethers bearing a thiophene spacer as fluorimetric chemosensors for metal ion detection. Dyes Pigments 2016, 135, 134–142. [Google Scholar] [CrossRef]
- Raposo, M.M.M.; Sousa, A.M.R.C.; Fonseca, A.M.C.; Kirsch, G. Synthesis of formyl-thienylpyrroles: versatile building blocks for NLO materials. Tetrahedron 2006, 62, 3493–3501. [Google Scholar] [CrossRef]
- He, Y.P.; Su, G.B.; Shi, J.Q.; Yiu, G.M.; Jang, R.H. New organic nonlinear optical crystals of indole-3-aldehyde. J. Cryst. Growth 1993, 130, 444–446. [Google Scholar] [CrossRef]
- Karges, J.; Heinemann, F.; Maschietto, F.; Patra, M.; Blacque, O.; Ciofini, I.; Spingler, B.; Gasser, G. A Ru(II) polypyridyl complex bearing aldehyde functions as a versatile synthetic precursor for long-wavelength absorbing photodynamic therapy photosensitizers. Bioorganic Med. Chem. 2019, 27, 2666–2675. [Google Scholar] [CrossRef] [PubMed]
- Ooyama, Y.; Hagiwara, Y.; Oda, Y.; Mizumo, T.; Harima, Y.; Ohshita, J. Dye-sensitized solar cells based on a functionally separated D-π-A fluorescent dye with an aldehyde as an electron-accepting group. New J. Chem. 2013, 37, 2336–2340. [Google Scholar] [CrossRef]
- Tang, J.; Qu, S.; Hu, J.; Wu, W.; Hua, J. A new organic dye bearing aldehyde electron-withdrawing group for dye-sensitized solar cell. Sol. Energy 2012, 86, 2306–2311. [Google Scholar] [CrossRef]
- Guo, K.; Gao, Z.; Cheng, J.; Shao, Y.; Lu, X.; Wang, H. Linear thiophene-containing π-conjugated aldehydes with aggregation-induced emission for building solid red luminophors. Dyes Pigments 2015, 115, 166–171. [Google Scholar] [CrossRef]
- Chebrolu, L.D.; Thurakkal, S.; Balaraman, H.S.; Danaboyina, R. Selective and dual naked eye detection of Cu2+ and Hg2+ ions using a simple quinoline-carbaldehyde chemosensor. Sens. Actuators B Chem. 2014, 204, 480–488. [Google Scholar] [CrossRef]
- Chakraborty, N.; Bhuiya, S.; Chakraborty, A.; Mandal, D.; Das, S. Synthesis and photophysical investigation of 2-hydroxyquinoline-3-carbaldehyde: AIEE phenomenon, fluoride optical sensing and BSA interaction study. J. Photochem. Photobiol. A Chem. 2018, 359, 53–63. [Google Scholar] [CrossRef]
- Barszcz, B.; Glowiak, T.; Jezierska, J. Crystal and molecular structures of eight-coordinate (CuN4O4) and six-coordinate (CuN4O2) Cu(II) complexes with 4-methyl-5-imidazole-carboxaldehyde or 1-benzyl-2-hydroxymethylimidazole, respectively : spectroscopic and potentiometric studies. Polyhedron 1999, 18, 3713–3721. [Google Scholar] [CrossRef]
- Lo Presti, M.; Martínez-Máñez, R.; Ros-Lis, J.V.; Batista, R.M.F.; Costa, S.P.G.; Raposo, M.M.; Sancenón, F. A dual channel sulphur-containing a macrocycle functionalized BODIPY probe for the detection of Hg(II) in a mixed aqueous solution. New J. Chem. 2018, 42, 7863–7868. [Google Scholar] [CrossRef]
- Ferreira, R.C.M.; Raposo, M.M.M.; Costa, S.P.G. Novel alanines bearing a heteroaromatic side chain: synthesis and studies on fluorescent chemosensing of metal cations with biological relevance. Amino Acids 2018, 50, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Okda, H.E.; El Sayed, S.; Otri, I.; Ferreira, R.C.M.; Costa, S.P.G.; Raposo, M.M.M.; Martínez-Máñez, R.; Sancenón, F. 2,4,5-Triaryl imidazole probes for the selective chromo-fluorogenic detection of Cu(II). Prospective use of the Cu(II) complexes for the optical recognition of biothiols. Polyhedron 2019, 170, 388–394. [Google Scholar] [CrossRef]
- Ferreira, R.C.M.; Raposo, M.M.M.; Costa, S.P.G. Heterocyclic amino acids as fluorescent reporters for transition metals: Synthesis and evaluation of novel furyl-benzoxazol-5-yl-l-alanines. New J. Chem. 2018, 42, 3483–3492. [Google Scholar] [CrossRef]
- Podlesný, J.; Pytela, O.; Klikar, M.; Jelínková, V.; Kityk, I.V.; Ozga, K.; Jedryka, J.; Rudysh, M.; Bureš, F. Small isomeric push-pull chromophores based on thienothiophenes with tunable optical (non)linearities. Org. Biomol. Chem. 2019, 17, 3623–3634. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Tian, G.; Li, X.; Su, J.; Tian, H. Efficient and stable DSSC sensitizers based on substituted dihydroindolo[2,3-b]carbazole donors with high molar extinction coefficients. J. Mater. Chem. A 2013, 1, 11295–11305. [Google Scholar] [CrossRef]
Compound | Method | n(2)/Eq. | n(Boronic Acid)/Eq. | t/h | η/% |
---|---|---|---|---|---|
3a | A | 1 | 1.3 | 5 | 98 |
B | 1 | 1.3 | 3 | 14 | |
3b | A | 1 | 1.3 | 10 | 65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, R.P.C.L.; Gonçalves, R.C.R.; Costa, S.P.G.; Figueira, R.B.; Raposo, M.M.M. Heterocyclic Aldehydes Based on Thieno[3,2-b]thiophene Core: Synthesis and Preliminary Studies as Ion Optical Chemosensors. Chem. Proc. 2021, 3, 88. https://doi.org/10.3390/ecsoc-24-08092
Sousa RPCL, Gonçalves RCR, Costa SPG, Figueira RB, Raposo MMM. Heterocyclic Aldehydes Based on Thieno[3,2-b]thiophene Core: Synthesis and Preliminary Studies as Ion Optical Chemosensors. Chemistry Proceedings. 2021; 3(1):88. https://doi.org/10.3390/ecsoc-24-08092
Chicago/Turabian StyleSousa, Rui P. C. L., Raquel C. R. Gonçalves, Susana P. G. Costa, Rita B. Figueira, and Maria Manuela M. Raposo. 2021. "Heterocyclic Aldehydes Based on Thieno[3,2-b]thiophene Core: Synthesis and Preliminary Studies as Ion Optical Chemosensors" Chemistry Proceedings 3, no. 1: 88. https://doi.org/10.3390/ecsoc-24-08092