Density Functional Theory (DFT) and Thermodynamics Calculations of Amino Acids with Polar Uncharged Side Chains †
Abstract
:1. Introduction
2. Computational Procedure
3. Results and Discussion
4. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.T.; Gilbert, A.T.B.; Slipchenko, L.V.; Levchenko, S.V.; O’Neill, D.P.; et al. Head-Gordon. Phys. Chem. Chem. Phys. 2006, 8, 3172–3191. [Google Scholar] [CrossRef] [PubMed]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpaly, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Lee, S.; Oh, J.; Kim, D.; Piao, Y. A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 2016, 160, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, K.; Kuma, R.T. Structural, spectral, thermodynamical, NLO, HOMO, LUMO and NBO analysis of fluconazole. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 150, 974–991. [Google Scholar] [CrossRef] [PubMed]
Chemical Formula | C3H7NO3 | C4H9NO3 | C4H8N2O3 | C5H10N2O3 |
---|---|---|---|---|
Molecular weight (g·mol−1) | 105.09 | 119.12 | 132.12 | 146.14 |
Tautomers | 1 | 1 | 3 | 3 |
Conformers | 81 | 81 | 81 | 243 |
HBD Count | 2 | 2 | 2 | 2 |
HBA Count | 3 | 3 | 4 | 4 |
Log P | −1.75 | −1.43 | −2.33 | −2.05 |
Ovality | 1.21 | 1.26 | 1.26 | 1.32 |
Parameter | Vacuum | Water | Vacuum | Water | Vacuum | Water | Vacuum | Water |
---|---|---|---|---|---|---|---|---|
L-Serine | L-Threonine | L-Asparagine | L-Glutamine | |||||
EHOMO (eV) | −7.08 | −6.92 | −6.78 | −6.69 | −6.2 | −6.46 | −6.78 | −6.91 |
ELUMO (eV) | 0.13 | 0.1 | 0.01 | −0.04 | 0.34 | 0.19 | 0.29 | 0.21 |
ΔE(EHOMO-ELUMO) (eV) | −7.21 | −7.02 | −6.79 | −6.65 | −6.54 | −6.65 | −7.07 | −7.12 |
I = −EHOMO (eV) | 7.08 | 6.92 | 6.78 | 6.69 | 6.2 | 6.46 | 6.78 | 6.91 |
A = −ELUMO (eV) | −0.13 | −0.1 | −0.01 | 0.04 | −0.34 | −0.19 | −0.29 | −0.21 |
χ = (I + A)/2 (eV) | 3.475 | 3.41 | 3.385 | 3.365 | 2.93 | 3.135 | 3.245 | 3.35 |
η = (I − A)/2) (eV) | 3.605 | 3.51 | 3.395 | 3.325 | 3.27 | 3.325 | 3.535 | 3.56 |
σ = I/η | 1.96 | 1.97 | 2.00 | 2.01 | 1.90 | 1.94 | 1.92 | 1.94 |
μ = (EHOMO + ELUMO)/2 | −3.475 | −3.41 | −3.385 | −3.365 | −2.93 | −3.135 | −3.245 | −3.35 |
ω = μ2/2η | 21.77 | 20.41 | 19.45 | 18.82 | 14.04 | 16.34 | 18.61 | 19.98 |
Parameter | Vacuum | Water | Vacuum | Water | Vacuum | Water | Vacuum | Water |
---|---|---|---|---|---|---|---|---|
L-Serine | L-Threonine | L-Asparagine | L-Glutamine | |||||
EHOMO (eV) | −7.08 | −6.92 | −6.78 | −6.69 | −6.2 | −6.46 | −6.78 | −6.91 |
ELUMO (eV) | 0.13 | 0.1 | 0.01 | −0.04 | 0.34 | 0.19 | 0.29 | 0.21 |
ΔE(EHOMO-ELUMO) (eV) | −7.21 | −7.02 | −6.79 | −6.65 | −6.54 | −6.65 | −7.07 | −7.12 |
I = −EHOMO (eV) | 7.08 | 6.92 | 6.78 | 6.69 | 6.2 | 6.46 | 6.78 | 6.91 |
A = −ELUMO (eV) | −0.13 | −0.1 | −0.01 | 0.04 | −0.34 | −0.19 | −0.29 | −0.21 |
χ = (I + A)/2 (eV) | 3.475 | 3.41 | 3.385 | 3.365 | 2.93 | 3.135 | 3.245 | 3.35 |
η = (I − A)/2) (eV) | 3.605 | 3.51 | 3.395 | 3.325 | 3.27 | 3.325 | 3.535 | 3.56 |
σ = I/η | 1.96 | 1.97 | 2.00 | 2.01 | 1.90 | 1.94 | 1.92 | 1.94 |
μ = (EHOMO + ELUMO)/2 | −3.475 | −3.41 | −3.385 | −3.365 | −2.93 | −3.135 | −3.245 | −3.35 |
ω = μ2/2η | 21.77 | 20.41 | 19.45 | 18.82 | 14.04 | 16.34 | 18.61 | 19.98 |
Parameter | L-Serine | L-Threonine | L-Asparagine | L-Glutamine |
---|---|---|---|---|
ZPE(/kJ∙mol−1) | 300.9 | 300.90 | 300.90 | 300.90 |
ΔH (a.u.) | −398.82796 | −398.82796 | −398.82796 | −398.82796 |
Cv (J∙mol−1) | 86.96 | 104.31 | 111.29 | 123.23 |
S (J∙mol−1) | 336.36 | 336.36 | 336.36 | 336.36 |
G (a.u.) | −398.87 | −438.11 | −492.29 | −531.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinzei, M.; Stefaniu, A.; Iulian, O.; Ciocirlan, O. Density Functional Theory (DFT) and Thermodynamics Calculations of Amino Acids with Polar Uncharged Side Chains. Chem. Proc. 2021, 3, 56. https://doi.org/10.3390/ecsoc-24-08420
Brinzei M, Stefaniu A, Iulian O, Ciocirlan O. Density Functional Theory (DFT) and Thermodynamics Calculations of Amino Acids with Polar Uncharged Side Chains. Chemistry Proceedings. 2021; 3(1):56. https://doi.org/10.3390/ecsoc-24-08420
Chicago/Turabian StyleBrinzei, Mihaela, Amalia Stefaniu, Olga Iulian, and Oana Ciocirlan. 2021. "Density Functional Theory (DFT) and Thermodynamics Calculations of Amino Acids with Polar Uncharged Side Chains" Chemistry Proceedings 3, no. 1: 56. https://doi.org/10.3390/ecsoc-24-08420
APA StyleBrinzei, M., Stefaniu, A., Iulian, O., & Ciocirlan, O. (2021). Density Functional Theory (DFT) and Thermodynamics Calculations of Amino Acids with Polar Uncharged Side Chains. Chemistry Proceedings, 3(1), 56. https://doi.org/10.3390/ecsoc-24-08420