Synthesis of 1,2,3-Triazoles from Alkyne-Azide Cycloaddition Catalyzed by a Bio-Reduced Alkynylcopper (I) Complex †
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Copper (I) Phenylacetylide (1)
3.2. General Procedure for the Synthesis of 1,2,3-Triazoles Catalyzed by Copper Phenylacetylide
3.2.1. 1-(1-Benzyl-1,2,3-triazol-4-yl)cyclohexanol 4
3.2.2. 1-Benzyl-4-phenyl-1,2,3-triazole 5
3.2.3. 1-Benzyl-4-(4-chlorophenoxymethyl)-1,2,3-triazole 6
3.2.4. 1-Benzyl-4-(4-nitrophenoxymethyl)-1,2,3-triazole 7
3.2.5. 1-Benzyl-4-(4-bromophenoxymethyl)-1,2,3-triazole 8
3.2.6. 1-Benzyl-4-p-tolyloxymethyl-1,2,3-triazole 9
3.2.7. 1-Benzyl-4-(naphthalen-1-yloxymethyl)-1,2,3-riazole 10
3.2.8. 1,3-Bis-[4-(1-hydroxy)cyclohexyl-1,2,3-triazol-1-yl]propan-2-ol 11
3.2.9. 1,3-Bis-(4-phenyl-1,2,3-triazol-1-yl)-propan-2-ol 12
3.2.10. 1,3-Bis-[4-(4-chlorophenoxymethyl)-1,2,3-triazol-1-yl]-propan-2-ol 13
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Tong, Z.R. Click Chemistry: Approaches, Applications and Chellenges; Nova Science Publishers: New York, NY, USA, 2017. [Google Scholar]
- Chandrasekaran, S. Click Reactions in Organic Synthesis; Wiler-VCH: Wienheim, Germany, 2016. [Google Scholar]
- El-Azab, A.S.; Abdel-Aziz, A.A.M. Click Chemistry and Applications; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2014. [Google Scholar]
- Lahann, J. Click Chemistry for Biotechnology and Materials Science; JohnWiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Liang, L.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 2011, 255, 2933–2945. [Google Scholar] [CrossRef]
- Bock, V.D.; Hiemstra, H.; van Maarseveen, J.H. CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. Eur. J. Org. Chem. Soc. 2006, 2006, 51–68. [Google Scholar] [CrossRef]
- Buckley, B.R.; Dann, S.E.; Heaney, H. Experimental Evidence for the Involvement of Dinuclear Alkynylcopper(I) Complexes in Alkyne–Azide Chemistry. Chem. Eur. J. 2010, 16, 6278–6284. [Google Scholar] [CrossRef] [PubMed]
- Sladkov, A.M.; Ukhin, L.Y. Copper and Silver Acetylides in Organic Synthesis. Russ. Chem. Rev. 1968, 37, 748–763. [Google Scholar] [CrossRef]
- Buckley, B.R.; Dann, S.E.; Heaney, H.; Stubbs, E.C. Heterogeneous Catalytic Reactions “On Water” by Using Stable Polymeric Alkynylcopper(I) Pre-Catalysts: Alkyne/Azide Cycloaddition Reactions. Eur. J. Org. Chem. 2011, 2011, 770–776. [Google Scholar] [CrossRef]
- Buckley, B.R.; Dann, S.E.; Harris, D.P.; Heaney, H.; Stubbs, E.C. Alkynylcopper(I) polymers and their use in a mechanistic study of alkyne–azide click reactions. Chem. Commun. 2010, 46, 2274–2276. [Google Scholar] [CrossRef] [PubMed]
- Evano, G.; Jouvin, K.; Theunissen, C.; Guissart, C.; Laouiti, A.; Tresse, C.; Heimburger, J.; Bouhoute, Y.; Veillard, R.; Lecomte, M.; et al. Turning unreactive copper acetylides into remarkably powerful and mild alkyne transfer reagents by oxidative umpolung. Chem. Commun. 2014, 50, 10008–10018. [Google Scholar] [CrossRef] [PubMed]
- Díez-González, S. Copper(I)–Acetylides: Access, Structure, and Relevance in Catalysis. Adv. Organomet. Chem. 2016, 66, 93–141. [Google Scholar]
- Ramírez-Palma, M.T.; Segura-Arzate, J.; López-Téllez, G.; Cuevas-Yañez, E. Ligand Synthesis Catalyst and Complex Metal Ion: Multicomponent Synthesis of 1,3-Bis(4-phenyl-[1,2,3]triazol-1-yl)-propan-2-ol Copper(I) Complex and Application in Copper-Catalyzed Alkyne-Azide Cycloaddition. J. Chem. 2016, 2016, 6432492. [Google Scholar] [CrossRef]
- García, M.A.; Ríos, Z.G.; González, J.; Pérez, V.M.; Lara, N.; Fuentes, A.; González, C.; Corona, D.; Cuevas-Yañez, E. The Use of Glucose as Alternative Reducing Agent in Copper-Catalyzed Alkyne-Azide Cycloaddition. Lett. Org. Chem. 2011, 8, 701–706. [Google Scholar] [CrossRef]
- Theunissen, C.; Lecomte, M.; Jouvin, K.; Laouiti, A.; Guissart, C.; Heimburger, J.; Loire, E.; Evano, G. Convenient and Practical Alkynylation of Heteronucleophiles with Copper Acetylides. Synthesis 2014, 46, 1157–1166. [Google Scholar]
- Okamoto, Y.; Kundu, S.K. Photoconductive Properties of Arylethynylcopper Polymers. Effects of Structure and Oxygen. J. Phys. Chem. 1973, 77, 2677–2680. [Google Scholar] [CrossRef]
- Velasco, B.E.; López-Téllez, G.; González-Rivas, N.; García-Orozco, I.; Cuevas-Yañez, E. Catalytic Activity of Dithioic Acid Copper Complexes in the Alkyne-Azide Cycloaddition. Can. J. Chem. 2013, 91, 292–299. [Google Scholar] [CrossRef]
- Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon. Org. Biomol. Chem. 2011, 9, 6385–6395. [Google Scholar] [CrossRef] [PubMed]
- Carley, A.F.; Dollard, L.A.; Norman, P.R.; Pottage, C.; Roberts, M.W. The reactivity of copper clusters supported on carbon studied by XPS. J. Electron Spectrosc. Relat. Phenom. 1999, 98–99, 223–233. [Google Scholar] [CrossRef]
- Zambrano-Huerta, A.; Cifuentes-Castañeda, D.D.; Bautista-Renedo, J.; Mendieta-Zerón, H.; Melgar-Fernández, R.C.; Pavón-Romero, S.; Morales-Rodríguez, M.; Frontana-Uribe, B.A.; González-Rivas, N.; Cuevas-Yañez, E. Synthesis and in vitro biological evaluation of 1,3-bis-(1,2,3-triazol-1-yl)-propan-2-ol derivatives as antifungal compounds fluconazole analogues. Med. Chem. Res. 2019, 28, 571–579. [Google Scholar] [CrossRef]
Entry | Catalyst Ratio (mg/mmol) | Solvent | Reaction Time (h) | %Yield |
---|---|---|---|---|
1 | 0.25 | CH3OH | 24 | 50 |
2 | 0.25 | Acetone | 24 | 58 |
3 | 0.25 | CH2Cl2 | 24 | 60 |
4 | 0.25 | CH3OH | 48 | 51 |
5 | 0.25 | Acetone | 48 | 55 |
6 | 0.25 | CH2Cl2 | 48 | 63 |
7 | 0.5 | CH3OH | 24 | 72 |
8 | 0.5 | Acetone | 24 | 70 |
9 | 0.5 | CH2Cl2 | 24 | 75 |
10 | 0.5 | CH3OH | 48 | 71 |
11 | 0.5 | Acetone | 48 | 71 |
12 | 0.5 | CH2Cl2 | 48 | 76 |
13 | 1 | CH3OH | 24 | 74 |
14 | 1 | Acetone | 24 | 72 |
15 | 1 | CH2Cl2 | 24 | 77 |
16 | 1.5 | CH3OH | 24 | 74 |
17 | 1.5 | Acetone | 24 | 74 |
18 | 1.5 | CH2Cl2 | 24 | 76 |
Compound | Alkyne | Azide | % Yield |
---|---|---|---|
4 | CH2(CH2CH2)2C(OH)C≡CH | PhCH2N3 | 77 |
5 | PhC≡CH | PhCH2N3 | 80 |
6 | 4-ClC6H4OCH2C≡CH | PhCH2N3 | 70 |
7 | 4-NO2C6H4OCH2C≡CH | PhCH2N3 | 87 |
8 | 4-BrC6H4OCH2C≡CH | PhCH2N3 | 72 |
9 | 4-CH3C6H4OCH2C≡CH | PhCH2N3 | 82 |
10 | C10H7OCH2C≡CH | PhCH2N3 | 80 |
11 | CH2(CH2CH2)2C(OH)C≡CH | N3CH2CH(OH)CH2N3 | 83 |
12 | PhC≡CH | N3CH2CH(OH)CH2N3 | 92 |
13 | 4-ClC6H4OCH2C≡CH | N3CH2CH(OH)CH2N3 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela-Palma, J.; González, J.; Lopez-Téllez, G.; Unnamatla, M.V.B.; García-Eleno, M.A.; Cuevas-Yañez, E. Synthesis of 1,2,3-Triazoles from Alkyne-Azide Cycloaddition Catalyzed by a Bio-Reduced Alkynylcopper (I) Complex. Chem. Proc. 2021, 3, 54. https://doi.org/10.3390/ecsoc-24-08384
Varela-Palma J, González J, Lopez-Téllez G, Unnamatla MVB, García-Eleno MA, Cuevas-Yañez E. Synthesis of 1,2,3-Triazoles from Alkyne-Azide Cycloaddition Catalyzed by a Bio-Reduced Alkynylcopper (I) Complex. Chemistry Proceedings. 2021; 3(1):54. https://doi.org/10.3390/ecsoc-24-08384
Chicago/Turabian StyleVarela-Palma, Josué, Jaime González, Gustavo Lopez-Téllez, M. V. Basavanag Unnamatla, Marco A. García-Eleno, and Erick Cuevas-Yañez. 2021. "Synthesis of 1,2,3-Triazoles from Alkyne-Azide Cycloaddition Catalyzed by a Bio-Reduced Alkynylcopper (I) Complex" Chemistry Proceedings 3, no. 1: 54. https://doi.org/10.3390/ecsoc-24-08384