Synthesis of Novel Acylhydrazone-Oxazole Hybrids and Docking Studies of SARS-CoV-2 Main Protease †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Section and Computational Details
2.1.1. Ligand Preparation
2.1.2. Receptor Preparation
2.1.3. Docking Calculations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, A.H.; Zhao, Z.; Zhou, C. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem. 2018, 144, 444–492. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Bisht, A.S.; Juyal, D. Systematic scientific study of 1, 3-oxazole derivatives as a useful lead for pharmaceuticals: A review. Pharma Inov. J. 2017, 6, 109–117. [Google Scholar]
- Thota, S.; Reodrigues, D.A.; Pinheiro, P.M.; Lima, L.M.; Fraga, C.A.M.; Barreiro, E.J. N-Acylhydrazones as drugs. Bioorg. Med. Chem. Lett. 2018, 28, 2797–2806. [Google Scholar] [CrossRef] [PubMed]
- Bala, S.; Uppal, G.; Kajal, A.; Kamboj, S.; Sharma, V. Hydrazones as Promising Lead with Diversity in Bioactivity-therapeutic Potential in Present Scenario. Int. J. Pharm. Sci. Rev. Res. 2013, 18, 65–74. [Google Scholar]
- Saini, D.; Gupta, M. Hydrazones as potential anticancer agents: An update. Asian J. Pharm. Pharmacol. 2018, 4, 116–122. [Google Scholar] [CrossRef]
- Singh, N.; Ranjana, R.; Kumari, M.; Kumar, B. A Review on Biological Activities of Hydrazone Derivatives. Int. J. Pharm. Clin. Res. 2016, 8, 162–166. [Google Scholar]
- Kumar, P.; Narasimhan, B. Hydrazides/Hydrazones as Antimicrobial and Anticancer Agents in the New Millennium. Mini-Rev. Med. Chem. 2013, 13, 897–971. [Google Scholar] [CrossRef]
- Kumar, H.M.S.; Herrmann, L.; Tsogoeva, S.B. Structural hybridization as a facile approach to new drug candidates. Bioorg. Med. Chem. Lett. 2020, 30, 127514. [Google Scholar] [CrossRef]
- Ivasiv, V.; Albertini, C.; Goncalves, A.E.; Rossi, M.; Bolognesi, M.L. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr. Top. Med. Chem. 2019, 19, 1694–1711. [Google Scholar] [CrossRef]
- Mishra, S.S.; Sing, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem. 2016, 124, 500–536. [Google Scholar] [CrossRef]
- Bosquesi, P.L.; Melo, T.R.F.; Vizioli, E.O.; dos Santos, J.L.; Ching, M.C. Anti-Inflammatory Drug Design Using a Molecular Hybridization Approach. Pharmaceuticals 2011, 4, 1450–1474. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/hiv/pub/drugresistance/hivdr-report-2019/en/ (accessed on 1 November 2019).
- Khan, Z.; Karatas, Y.; Rahman, H. Anti COVID-19 Drugs: Need for More Clinical Evidence and Global Action. Adv. Ther. 2020, 37, 2575–2579. [Google Scholar] [CrossRef] [PubMed]
- Harapan, H.; Itoh, N.; Yufika, A.; Winardi, W.; Keam, S.; Te, H.; Megawati, D.; Hayati, Z.; Wagner, A.L.; Mudatsir, M. Coronavirus disease 2019 (COVID-19): A literature review. J. Infect. Public Health 2020, 13, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020, 253, 117592. [Google Scholar] [CrossRef]
- Elfiky, A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 2020, 248, 117477. [Google Scholar] [CrossRef]
- Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov. 2020, 19, 149–150. [Google Scholar] [CrossRef]
- Cortés-García, C.J.; Chacón-García, L.; Mejía-Benavides, J.E.; Díaz-Cervantes, E. Tackling the SARS-CoV-2 main protease using hybrid derivatives of 1,5-disubstituted tetrazole-1,2,3-triazoles: An in silico assay. Peer J. Phys. Chem. 2020, 2, e10. [Google Scholar] [CrossRef]
- Cousins, K.R. Computer Review of ChemDraw Ultra 12.0. J. Am. Chem. Soc. 2011, 133, 8388. [Google Scholar] [CrossRef]
- Swain, M. chemicalize.org. J. Chem. Inf. Mod. 2012, 52, 613–615. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. (Eds.) Gaussian 16; Revision, C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Sanner, M.F. A Programming Language for Software Integration and Development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar] [CrossRef]
- Rose, P.W.; Prlić, A.; Bi, C.; Bluhm, W.F.; Christie, C.H.; Dutta, S.; Green, R.K.; Goodsell, D.S.; Westbrook, J.D.; Woo, J.; et al. The RCSB Protein Data Bank: Views of structural biology for basic and applied research and education. Nucleic Acid. Res. 2015, 43, D345–D356. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 13, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- BIOVIA; Dassault Systèmes. Discovery Studio 2019; Dassault Systèmes: San Diego, CA, USA, 2019. [Google Scholar]
- García-Ramírez, V.G.; Contreras-Celedón, C.; Rodriguez-García, G.; Chacón-García, L.; Cortés-García, C.J. Synthesis of 1,3-Oxazoles via Van Leusen Reaction in a Pressure Reactor and Preliminary Studies of Cations Recognition. Proceedings 2020, 41, 6463. [Google Scholar] [CrossRef]
- Jin, Z.; Du, X.; Xu, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Jiang, H.; Rao, Z.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 1–5. [Google Scholar] [CrossRef]
Compound | ΔG (kcal/mol) | ki (µM) | pki |
---|---|---|---|
7a | −7.72 | 2.19 | 5.66 |
7b | −7.76 | 2.05 | 5.69 |
7c | −7.53 | 3.04 | 5.52 |
7d | −7.21 | 5.14 | 5.29 |
7e | −7.28 | 4.6 | 5.34 |
7f | −7.58 | 2.79 | 5.55 |
7g | −8.22 | 0.94 | 6.03 |
7h | −7.5 | 3.17 | 5.50 |
N3 | −7.7 | 1.70 | 5.77 |
Compound | Residues of Interaction | Type of Interaction |
---|---|---|
7a | Cys145 | π-sulfur |
Met165 | π-sulfur | |
Thr190 | π-amide | |
7b | Cys145 | Hydrogen bond |
Met165 | π-sulfur | |
Thr190 | π-amide | |
7g | Cys145 | π-alkyl |
Met165 | π-sulfur |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ramírez, V.G.; Suarez-Castro, A.; Villa-Lopez, M.G.; Díaz-Cervantes, E.; Chacón-García, L.; Cortes-García, C.J. Synthesis of Novel Acylhydrazone-Oxazole Hybrids and Docking Studies of SARS-CoV-2 Main Protease. Chem. Proc. 2021, 3, 1. https://doi.org/10.3390/ecsoc-24-08329
García-Ramírez VG, Suarez-Castro A, Villa-Lopez MG, Díaz-Cervantes E, Chacón-García L, Cortes-García CJ. Synthesis of Novel Acylhydrazone-Oxazole Hybrids and Docking Studies of SARS-CoV-2 Main Protease. Chemistry Proceedings. 2021; 3(1):1. https://doi.org/10.3390/ecsoc-24-08329
Chicago/Turabian StyleGarcía-Ramírez, Verónica G., Abel Suarez-Castro, Ma. Guadalupe Villa-Lopez, Erik Díaz-Cervantes, Luis Chacón-García, and Carlos J. Cortes-García. 2021. "Synthesis of Novel Acylhydrazone-Oxazole Hybrids and Docking Studies of SARS-CoV-2 Main Protease" Chemistry Proceedings 3, no. 1: 1. https://doi.org/10.3390/ecsoc-24-08329
APA StyleGarcía-Ramírez, V. G., Suarez-Castro, A., Villa-Lopez, M. G., Díaz-Cervantes, E., Chacón-García, L., & Cortes-García, C. J. (2021). Synthesis of Novel Acylhydrazone-Oxazole Hybrids and Docking Studies of SARS-CoV-2 Main Protease. Chemistry Proceedings, 3(1), 1. https://doi.org/10.3390/ecsoc-24-08329