Highly Active Pandanus Nanocellulose-Supported Poly(amidoxime) Copper (II) Complex for Ullmann Cross-Coupling Reaction †
Abstract
:1. Introduction
2. Methodology
2.1. Synthesis of Nanocellulose
2.2. Graft Copolymerization; PAC
2.3. Synthesis of Nanocellulose-Based Poly(amidoxime) Chelating Ligand; PAM
2.4. Preparation of Cu(II)@PAM
2.5. General Procedure for the Ullmann Etherification Cross-Coupling Reaction
3. Result and Discussion
3.1. FE-SEM, TEM and EDX Analysis
3.2. Thermogravimetry Analysis
3.3. X-ray Photoelectron Spectroscopy Analysis (XPS)
3.4. Copper (II) Catalyzed Ullmann Etherification Coupling Reaction
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Cristau, H.-J.; Cellier, P.P.; Hamada, S.; Spindler, J.-F.; Taillefer, M. A General and Mild Ullmann-Type Synthesis of Diaryl Ethers. Org. Lett. 2004, 6, 913–916. [Google Scholar] [CrossRef] [PubMed]
- Puthiaraj, P.; Ahn, W.-S. Synthesis of copper nanoparticles supported on a microporous covalent triazine polymer: An efficient and reusable catalyst for O-arylation reaction. Catal. Sci. Technol. 2016, 6, 1701–1709. [Google Scholar] [CrossRef]
- Liu, X.; Chang, S.; Chen, X.; Ge, X.; Qian, C. Efficient Ullmann C–X coupling reaction catalyzed by a recoverable functionalized-chitosan supported copper complex. New J. Chem. 2018, 42, 16013–16020. [Google Scholar] [CrossRef]
- Taherinia, Z.; Ghorbani-Choghamarani, A. Cu(I)-PNF, an organic-based nanocatalyst, catalyzed C-O and C-S cross-coupling reactions. Can. J. Chem. 2019, 97, 46. [Google Scholar] [CrossRef]
- Shi, X.-L.; Chen, Y.; Hu, Q.; Zhang, W.; Luo, C.; Duan, P. A Potential Industrialized Fiber-Supported Copper Catalyst for One-pot Multicomponent CuAAC Reactions in Water. J. Ind. Eng. Chem. 2017, 53, 134–142. [Google Scholar] [CrossRef]
- Silva, L.S.; Carvalho, J.; Bezerra, R.D.S.; Silva, M.S.; Ferreira, F.J.L.; Osajima, J.A.; da Silva Filho, E.C. Potential of Cellulose Functionalized with Carboxylic Acid as Biosorbent for the Removal of Cationic Dyes in Aqueous Solution. Molecules 2018, 23, 743. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xie, J.P.; Li, Y.J.; Zhang, Q.; Yao, J.M. Three-dimensional macroporous cellulose-based bioadsorbents for efficient removal of nickel ions from aqueous solution. Cellulose 2016, 23, 723–736. [Google Scholar] [CrossRef]
- Rahman, M.L.; Sarkar, S.M.; Yusoff, M.M. Efficient removal of heavy metals from electroplating wastewater using polymer ligands. Front. Environ. Sci. Eng. 2016, 10, 352–361. [Google Scholar] [CrossRef]
- Kumari, S.; Mankotia, D.; Chauhan, G.S. Crosslinked cellulose dialdehyde for Congo red removal from its aqueous solutions. J. Environ. Chem. Eng. 2016, 4, 1126–1136. [Google Scholar] [CrossRef]
- Jianfui, C.; Sarjadi, M.; Musta, B.; Sarkar, M.; Rahman, M.L. Synthesis of Sawdust-based Poly(amidoxime) Ligand for Heavy Metals Removal from Wastewater. ChemistrySelect 2019, 4, 2991–3001. [Google Scholar] [CrossRef]
- Mondal, S. Recent advancement of Ullmann-type coupling reactions in the formation of C–C bond. ChemTexts 2016, 2, 17. [Google Scholar] [CrossRef]
- Rahman, M.L.; Sarjadi, M.S.; Arshad, S.E.; Yusoff, M.M.; Sarkar, S.M.; Musta, B. Kenaf cellulose-based poly(amidoxime) ligand for adsorption of rare earth ions. Rare Met. 2019, 38, 259–269. [Google Scholar] [CrossRef]
- Rahman, M.L.; Fui, C.J.; Sarjadi, M.S.; Arshad, S.E.; Musta, B.; Abdullah, M.H.; Sarkar, S.M.; O’Reilly, E.J. Poly (amidoxime) ligand derived from waste palm fiber for the removal of heavy metals from electroplating wastewater. Environ. Sci. Pollut. Res. 2020, 27, 34541–34556. [Google Scholar] [CrossRef] [PubMed]
- El-Bahy, S.M.; El-Bahy, Z.M. Synthesis and characterization of polyamidoxime chelating resin for adsorption of Cu(II), Mn(II) and Ni(II) by batch and column study. J. Environ. Chem. Eng. 2016, 4, 276–286. [Google Scholar] [CrossRef]
- Alabugin, I.V.; Bresch, S.; Manoharan, M. Hybridization Trends for Main Group Elements and Expanding the Bent’s Rule Beyond Carbon: More than Electronegativity. J. Phys. Chem. A 2014, 118, 3663–3677. [Google Scholar] [CrossRef] [PubMed]
Entry | Cu(II)@PAM (mg) | Time (h) | Yield (%) | |
---|---|---|---|---|
1 | 15 | 80 | 8 | 98 |
2 | 5 | 50 | 8 | 99 |
3 | 3 | 50 | 2 | 99 |
4 | 1.5 | 50 | 2 | 89 |
99% | 99% | 99% | 99% | 97% | 90% |
99% | 85% | 68% | 78% | 95% | 90% |
85% | 85% | 90% | 58% | 85% | 95% |
98% | 93% | 77% | 83% | 85% | 88% |
I = 60%; Br = 55%; Cl = 20% | I = 77%; Br = 69%; Cl = 51% | I = 90%; Br=82%; Cl = 60% | I = 65%; Br = 50%; Cl = 20% | I= 50%; Br= 45%; Cl = 15 |
Br = 67% | Br = 75% | Br = 65% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fui, C.J.; Ting, T.X.; Sarjadi, M.S.; Rahman, M.L. Highly Active Pandanus Nanocellulose-Supported Poly(amidoxime) Copper (II) Complex for Ullmann Cross-Coupling Reaction. Chem. Proc. 2020, 2, 14. https://doi.org/10.3390/ECCS2020-07530
Fui CJ, Ting TX, Sarjadi MS, Rahman ML. Highly Active Pandanus Nanocellulose-Supported Poly(amidoxime) Copper (II) Complex for Ullmann Cross-Coupling Reaction. Chemistry Proceedings. 2020; 2(1):14. https://doi.org/10.3390/ECCS2020-07530
Chicago/Turabian StyleFui, Choong Jian, Tang Xin Ting, Mohd Sani Sarjadi, and Md Lutfor Rahman. 2020. "Highly Active Pandanus Nanocellulose-Supported Poly(amidoxime) Copper (II) Complex for Ullmann Cross-Coupling Reaction" Chemistry Proceedings 2, no. 1: 14. https://doi.org/10.3390/ECCS2020-07530
APA StyleFui, C. J., Ting, T. X., Sarjadi, M. S., & Rahman, M. L. (2020). Highly Active Pandanus Nanocellulose-Supported Poly(amidoxime) Copper (II) Complex for Ullmann Cross-Coupling Reaction. Chemistry Proceedings, 2(1), 14. https://doi.org/10.3390/ECCS2020-07530