Development of Photocatalytic Reduction Method of Cr(VI) with Modified g-C3N4 †
Abstract
1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Synthesis of g-CN Photocatalysts
2.3. Characterization
2.4. Photocatalytic Activity Testing
3. Results and Discussion
3.1. Structural Characterizations
3.2. Photoreduction in Cr(VI)
3.3. Proposed Mechanism for Cr(VI) Photoreduction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niu, Q.; Liu, M.; Fang, L.; Yu, Y.; Cheng, L.; You, T. Highly Dispersed and Stable Nano Zero-Valent Iron Doped Electrospun Carbon Nanofiber Composite for Aqueous Hexavalent Chromium Removal. RSC Adv. 2022, 12, 8178/8187. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Chen, Z.; Han, J.; Wei, Z.; Yang, L.; Lu, M.; Ma, T.; Yang, L. An All-in-One Photocatalyst: Photocatalytic Reduction of Cr(VI) and Anchored Adsorption of Cr(III) over Mesoporous Titanium@sulfonated Carbon Hollow Hemispheres. J. Environ. Chem. Eng. 2022, 10, 107864. [Google Scholar] [CrossRef]
- Cao, D.; Guan, J.; Du, J.; Sun, Q.; Ma, J.; Li, J.; Liu, J.; Sheng, G. Halogen-Functionalized Covalent Organic Frameworks for Photocatalytic Cr(VI) Reduction under Visible Light. J. Hazard. Mater. 2024, 476, 134956. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Arshad, M. Preparation of MoS2/V2O5 Nanocomposites for Ciprofloxacin Degradation and Cr(VI) Reduction. J. Alloys Compd. 2024, 1006, 176224. [Google Scholar] [CrossRef]
- Wu, Z.; He, X.; Xue, Y.; Yang, X.; Li, Y.; Li, Q.; Yu, B. Cyclodextrins Grafted MoS2/g-C3N4 as High-Performance Photocatalysts for the Removal of Glyphosate and Cr (VI) from Simulated Agricultural Runoff. Chem. Eng. J. 2020, 399, 125747. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Wang, R.; Zhu, W.; Zhang, L.; Du, T.; Sun, J.; Zhu, M.-Q.; Shen, Y.; Wang, J. Efficient Hollow Cubic Co9S8@defective ZnS/g-C3N4 for Multi-Pollutants Removal via Cascade Z-Scheme Heterojunction. Appl. Catal. B 2023, 322, 122084. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance. Acta Phys. Chim. Sin. 2021, 37, 2010030. [Google Scholar] [CrossRef]
- Kim, H.; Gim, S.; Jeon, T.H.; Kim, H.; Choi, W. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities. ACS Appl. Mater. Interfaces 2017, 9, 40360–40368. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, W.; Zhang, C.; Cheng, M.; Zhou, Y.; Yang, Y.; Luo, H.; Qin, D.; Huang, C.; Ouyang, Z. Multiple Optimization Strategies for Improving Photocatalytic Performance of the H-BN/Flower-Ring g-C3N4 Heterostructures: Morphology Engineering and Internal Electric Field Effect. Chem. Eng. J. 2022, 446, 137027. [Google Scholar] [CrossRef]
- Jiménez-Flores, Y.; Jiménez-Rangel, K.; Samaniego-Benítez, J.E.; Lartundo-Rojas, L.; Calderón, H.A.; Gómez, R.; Mantilla, A. Novelty g-C3N4/HAp Composite as Highly Effective Photocatalyst for Cr (VI) Photoreduction. Catal. Today 2022, 388–389, 168–175. [Google Scholar] [CrossRef]
- Cong, Y.; Li, X.; Zhang, S.; Zheng, Q.; Zhang, Y.; Lv, S.-W. Embedding Carbon Quantum Dots into Crystalline Polyimide Covalent Organic Frameworks to Enhance Water Oxidation for Achieving Dual-Channel Photocatalytic H2O2 Generation in a Wide PH Range. ACS Appl. Mater. Interfaces 2023, 15, 43799–43809. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Karthik, R.; Chen, S.-M.; Vinoth Kumar, J.; Prakash, K.; Muthuraj, V. Construction of Novel Pd/CeO2/g-C3N4 Nanocomposites as Efficient Visible-Light Photocatalysts for Hexavalent Chromium Detoxification. J. Colloid. Interface Sci. 2017, 504, 514/526. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, M.; Xu, C.; Chen, S. Facile Synthesis of g-C3N4/ZnO Composite with Enhanced Visible Light Photooxidation and Photoreduction Properties. Chem. Eng. J. 2012, 209, 386/393. [Google Scholar] [CrossRef]
- Das, B.; Rao Pala, L.P.; Mohanta, M.K.; Devi, M.; Chakraborty, D.; Peela, N.R.; Qureshi, M.; Dhar, S.S. Organic–Inorganic Hybrid Photocatalyst Consisting of a Highly Conjugated Metal Complex and Graphitic Carbon Nitride for Efficient Hydrogen Evolution and Cr(VI) Reduction. J. Mater. Chem. A Mater. 2022, 10, 23691–23703. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, M.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. Development of Photocatalytic Reduction Method of Cr(VI) with Modified g-C3N4 . Chem. Proc. 2025, 17, 3. https://doi.org/10.3390/chemproc2025017003
Sato M, Furukawa M, Tateishi I, Katsumata H, Kaneco S. Development of Photocatalytic Reduction Method of Cr(VI) with Modified g-C3N4 . Chemistry Proceedings. 2025; 17(1):3. https://doi.org/10.3390/chemproc2025017003
Chicago/Turabian StyleSato, Miyu, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata, and Satoshi Kaneco. 2025. "Development of Photocatalytic Reduction Method of Cr(VI) with Modified g-C3N4 " Chemistry Proceedings 17, no. 1: 3. https://doi.org/10.3390/chemproc2025017003
APA StyleSato, M., Furukawa, M., Tateishi, I., Katsumata, H., & Kaneco, S. (2025). Development of Photocatalytic Reduction Method of Cr(VI) with Modified g-C3N4 . Chemistry Proceedings, 17(1), 3. https://doi.org/10.3390/chemproc2025017003